9 research outputs found
Recommended from our members
Results Of A Genome-wide Genetic Screen For Panic Disorder
Panic disorder is characterized by spontaneous and recurrent panic attacks, often accompanied by agoraphobia. The results of family, twin, and segregation studies suggest a genetic role in the etiology of the illness. We have genotyped up to 23 families that have a high density of panic disorder with 540 microsatellite DNA markers in a first-pass genomic screen. The thirteen best families (ELOD > 6.0 under the dominant genetic model) have been genotyped with an ordered set of markers encompassing all the autosomes, at an average marker density of 11 cM. Over 110,000 genotypes have been generated on the whole set of families, and the data have been analyzed under both a dominant and a recessive model, and with the program SIBPAIR.
No lod scores exceed 2.0 for either parametric model. Two markers give lod scores over 1.0 under the dominant model (chromosomes 1p and 20p), and four do under the recessive model (7p, 17p, 20q, and X/Y). One of these (20p) may be particularly promising. Analysis with SIBPAIR yielded P values equivalent to a lod score of 1.0 or greater (i.e., P < .016, one-sided, uncorrected for multiple tests) for 11 marker loci (2, 7p, 8p, 8q, 9p, 11q, 12q, 16p, 20p and 20q)
Meta-analyses of genome-wide linkage scans of anxiety-related phenotypes
Genetic factors underlying trait neuroticism, reflecting a tendency towards negative affective states, may overlap genetic susceptibility for anxiety disorders and help explain the extensive comorbidity amongst internalizing disorders. Genome-wide linkage (GWL) data from several studies of neuroticism and anxiety disorders have been published, providing an opportunity to test such hypotheses and identify genomic regions that harbor genes common to these phenotypes. In all, 11 independent GWL studies of either neuroticism (n8) or anxiety disorders (n3) were collected, which comprised of 5341 families with 15 529 individuals. The rank-based genome scan meta-analysis (GSMA) approach was used to analyze each trait separately and combined, and global correlations between results were examined. False discovery rate (FDR) analysis was performed to test for enrichment of significant effects. Using 10 cM intervals, bins nominally significant for both GSMA statistics, P SR and P OR, were found on chromosomes 9, 11, 12, and 14 for neuroticism and on chromosomes 1, 5, 15, and 16 for anxiety disorders. Genome-wide, the results for the two phenotypes were significantly correlated, and a combined analysis identified additional nominally significant bins. Although none reached genome-wide significance, an excess of significant P SR P-values were observed, with 12 bins falling under a FDR threshold of 0.50. As demonstrated by our identification of multiple, consistent signals across the genome, meta-analytically combining existing GWL data is a valuable approach to narrowing down regions relevant for anxiety-related phenotypes. This may prove useful for prioritizing emerging genome-wide association data for anxiety disorders
Are Anxiety Symptoms in Childhood Heritable?
Although childhood anxiety appears to aggregate in families, transmission could be explained by both genetic and shared environmental factors. Twin studies can be used to disentangle genetic and environmental effects. In this study, a systematically ascertained sample of twins was used to investigate whether anxiety symptoms are heritable. Parent-rated anxiety symptoms could best be explained by an additive genetic model with heritability estimated at 59%. However, when self ratings were analysed (in the adolescent subsample), familial transmission could be accounted for by shared environmental factors only