39 research outputs found
Methodology for exposure and risk assessment in complex environmental pollution situations
Frequently environmental pollution results from different hazardous substances released in the environment, meaning that contaminated sites may have many different chemical sources and transport pathways. Problems concerning environmental pollution affect mainly physical, chemical and biological properties of air, water and soil. The relationships between the sources, exposure and effects of contaminants to human and ecological receptors are complex and many times are specific to a particular site, to certain environmental conditions and to a particular receptor. Often the methodology for exposure and risk assessment to environmental pollution is translated into sets of assessment questions. These questions are used to meet the needs of assessment, particular important in focusing the assessment during the problem formulation. Risk assessments vary widely in scope and application. Some look at single risks in a range of exposure scenarios, others are site-specific and look at the range of risks posed by a facility. In general, risk assessments are carried out to examine the effects of an agent on humans (Health Risk Assessment) and ecosystems (Ecological Risk Assessment). Environmental Risk Assessment (ERA) is the examination of risks resulting from technology that threaten ecosystems, animals and people. It includes human health risk assessments, ecological risk assessments and specific industrial applications of risk assessment that analyze identified end-points in people, biota or ecosystems
Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms.
The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was observed. Finally, all formulations proved to be biocompatible with both ISO compliant L929 fibroblasts and human MG63 osteoblast-like cells
The role of point-like topological excitations at criticality: from vortices to global monopoles
We determine the detailed thermodynamic behavior of vortices in the O(2)
scalar model in 2D and of global monopoles in the O(3) model in 3D. We
construct new numerical techniques, based on cluster decomposition algorithms,
to analyze the point defect configurations. We find that these criteria produce
results for the Kosterlitz-Thouless temperature in agreement with a topological
transition between a polarizable insulator and a conductor, at which free
topological charges appear in the system. For global monopoles we find no pair
unbinding transition. Instead a transition to a dense state where pairs are no
longer distinguishable occurs at T<Tc, without leading to long range disorder.
We produce both extensive numerical evidence of this behavior as well as a
semi-analytic treatment of the partition function for defects. General
expectations for N=D>3 are drawn, based on the observed behavior.Comment: 14 pages, REVTEX, 13 eps figure
The Chiral Phase Transition in Dissipative Dynamics
Numerical simulations of the chiral phase transition in the (3+1)dimensional
O(4)-model are presented. The evolutions of the chiral field follow purely
dissipative dynamics, starting from random chirally symmetric initial
configurations down to the true vacuum with spontaneously broken symmetry. The
model stabilizes topological textures which are formed together with domains of
disoriented chiral condensate (DCC) during the roll-down phase. The classically
evolving field acts as source for the emission of pions and mesons.
The exponents of power laws for the growth of angular correlations and for
emission rates are extracted. Fluctuations in the abundance ratios for neutral
and charged pions are compared with those for uncorrelated sources as potential
signature for the chiral phase transition after heavy-ion collisions. It is
found that the presence of stabilizing textures (baryons and antibaryons)
prevents sufficiently rapid growth of DCC-domain size, so observability of
anomalous tails in the abundance ratios is unlikely. However, the transient
formation of growing DCC domains causes sizable broadening of the distributions
as compared to the statistical widths of generic sources.Comment: 28 pages, 8 figure
Nonequilibrium Evolution of Correlation Functions: A Canonical Approach
We study nonequilibrium evolution in a self-interacting quantum field theory
invariant under space translation only by using a canonical approach based on
the recently developed Liouville-von Neumann formalism. The method is first
used to obtain the correlation functions both in and beyond the Hartree
approximation, for the quantum mechanical analog of the model. The
technique involves representing the Hamiltonian in a Fock basis of annihilation
and creation operators. By separating it into a solvable Gaussian part
involving quadratic terms and a perturbation of quartic terms, it is possible
to find the improved vacuum state to any desired order. The correlation
functions for the field theory are then investigated in the Hartree
approximation and those beyond the Hartree approximation are obtained by
finding the improved vacuum state corrected up to . These
correlation functions take into account next-to-leading and
next-to-next-to-leading order effects in the coupling constant. We also use the
Heisenberg formalism to obtain the time evolution equations for the equal-time,
connected correlation functions beyond the leading order. These equations are
derived by including the connected 4-point functions in the hierarchy. The
resulting coupled set of equations form a part of infinite hierarchy of coupled
equations relating the various connected n-point functions. The connection with
other approaches based on the path integral formalism is established and the
physical implications of the set of equations are discussed with particular
emphasis on thermalization.Comment: Revtex, 32 pages; substantial new material dealing with
non-equilibrium evolution beyond Hartree approx. based on the LvN formalism,
has been adde