22 research outputs found

    Wavefunction statistics in open chaotic billiards

    Full text link
    We study the statistical properties of wavefunctions in a chaotic billiard that is opened up to the outside world. Upon increasing the openings, the billiard wavefunctions cross over from real to complex. Each wavefunction is characterized by a phase rigidity, which is itself a fluctuating quantity. We calculate the probability distribution of the phase rigidity and discuss how phase rigidity fluctuations cause long-range correlations of intensity and current density. We also find that phase rigidities for wavefunctions with different incoming wave boundary conditions are statistically correlated.Comment: 4 pages, RevTeX; 1 figur

    Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions

    Full text link
    We consider the d=1d=1 nonlinear Fokker-Planck-like equation with fractional derivatives tP(x,t)=Dγxγ[P(x,t)]ν\frac{\partial}{\partial t}P(x,t)=D \frac{\partial^{\gamma}}{\partial x^{\gamma}}[P(x,t) ]^{\nu}. Exact time-dependent solutions are found for ν=2γ1+γ \nu = \frac{2-\gamma}{1+ \gamma} (<γ2-\infty<\gamma \leq 2). By considering the long-distance {\it asymptotic} behavior of these solutions, a connection is established, namely q=γ+3γ+1q=\frac{\gamma+3}{\gamma+1} (0<γ20<\gamma \le 2), with the solutions optimizing the nonextensive entropy characterized by index qq . Interestingly enough, this relation coincides with the one already known for L\'evy-like superdiffusion (i.e., ν=1\nu=1 and 0<γ20<\gamma \le 2). Finally, for (γ,ν)=(2,0)(\gamma,\nu)=(2, 0) we obtain q=5/3q=5/3 which differs from the value q=2q=2 corresponding to the γ=2\gamma=2 solutions available in the literature (ν<1\nu<1 porous medium equation), thus exhibiting nonuniform convergence.Comment: 3 figure

    Fractional Langevin equation

    Full text link
    We investigate fractional Brownian motion with a microscopic random-matrix model and introduce a fractional Langevin equation. We use the latter to study both sub- and superdiffusion of a free particle coupled to a fractal heat bath. We further compare fractional Brownian motion with the fractal time process. The respective mean-square displacements of these two forms of anomalous diffusion exhibit the same power-law behavior. Here we show that their lowest moments are actually all identical, except the second moment of the velocity. This provides a simple criterion which enables to distinguish these two non-Markovian processes.Comment: 4 page

    Chaos and flights in the atom-photon interaction in cavity QED

    Full text link
    We study dynamics of the atom-photon interaction in cavity quantum electrodynamics (QED), considering a cold two-level atom in a single-mode high-finesse standing-wave cavity as a nonlinear Hamiltonian system with three coupled degrees of freedom: translational, internal atomic, and the field. The system proves to have different types of motion including L\'{e}vy flights and chaotic walkings of an atom in a cavity. It is shown that the translational motion, related to the atom recoils, is governed by an equation of a parametric nonlinear pendulum with a frequency modulated by the Rabi oscillations. This type of dynamics is chaotic with some width of the stochastic layer that is estimated analytically. The width is fairly small for realistic values of the control parameters, the normalized detuning δ\delta and atomic recoil frequency α\alpha. It is demonstrated how the atom-photon dynamics with a given value of α\alpha depends on the values of δ\delta and initial conditions. Two types of L\'{e}vy flights, one corresponding to the ballistic motion of the atom and another one corresponding to small oscillations in a potential well, are found. These flights influence statistical properties of the atom-photon interaction such as distribution of Poincar\'{e} recurrences and moments of the atom position xx. The simulation shows different regimes of motion, from slightly abnormal diffusion with τ1.13\sim\tau^{1.13} at δ=1.2\delta =1.2 to a superdiffusion with τ2.2 \sim \tau^{2.2} at δ=1.92\delta=1.92 that corresponds to a superballistic motion of the atom with an acceleration. The obtained results can be used to find new ways to manipulate atoms, to cool and trap them by adjusting the detuning δ\delta.Comment: 16 pages, 7 figures. To be published in Phys. Rev.

    Continuous-time statistics and generalized relaxation equations

    Get PDF
    Using two simple examples, the continuous-time random walk as well as a two state Markov chain, the relation between generalized anomalous relaxation equations and semi-Markov processes is illustrated. This relation is then used to discuss continuous-time random statistics in a general setting, for statistics of convolution-type. Two examples are presented in some detail: the sum statistic and the maximum statistic

    Global stabilization of feedforward systems under perturbations in sampling schedule

    Full text link
    For nonlinear systems that are known to be globally asymptotically stabilizable, control over networks introduces a major challenge because of the asynchrony in the transmission schedule. Maintaining global asymptotic stabilization in sampled-data implementations with zero-order hold and with perturbations in the sampling schedule is not achievable in general but we show in this paper that it is achievable for the class of feedforward systems. We develop sampled-data feedback stabilizers which are not approximations of continuous-time designs but are discontinuous feedback laws that are specifically developed for maintaining global asymptotic stabilizability under any sequence of sampling periods that is uniformly bounded by a certain "maximum allowable sampling period".Comment: 27 pages, 5 figures, submitted for possible publication to SIAM Journal Control and Optimization. Second version with added remark
    corecore