16 research outputs found

    Implication of SAR of male medfly attractants in insect olfaction

    Full text link
    [EN] Medfly (Ceratitis capitata) males are strongly attracted by different compounds, not described as pheromones. The best attractants reported are (+)-alpha-copaene, a sesquiterpene of natural source and (-)-ceralure-B1, a non-natural iodinated cyclohexane ester. Although their origin, atomic composition, chemical and physical properties are rather different, they show similar attraction to medflies. The question of why these compounds, act behaviorally in the same way, has been never addressed in research papers. We show here for the first time that these compounds have quite similar stereochemistry, water accessible surfaces, certain local dipole moments and, to some extent, similar octanol/water partition coefficient (log P). When seven carbons, one oxygen and one iodine belonging to (-)-ceralure-B1 are selectively chosen based on topological homology with (+)-alpha-copaene and are overlaid with nine corresponding carbons of (+)-alpha-copaene, the RMS is 0.367 Angstrom. This represents a high degree of steric resemblance. Local dipole moments and charges are similar in those regions where the molecules show topological homologies. Thus, we hypothesize that these two molecules could interact with the same male medfly's odorant receptor(s). The implications of this result in future research in insect olfaction is discussed.Casaña Giner, V.; Levi, V.; Navarro-Llopis, V.; Jang, E. (2002). Implication of SAR of male medfly attractants in insect olfaction. SAR and QSAR in Environmental Research. 13(7-8):629-640. doi:10.1080/1062936021000043382S629640137-

    Comparison of neurotrophin and repellent sensitivities of early embryonic geniculate and trigeminal axons

    No full text
    Geniculate (gustatory) and trigeminal (somatosensory) afferents take different routes to the tongue during rat embryonic development. To learn more about the mechanisms controlling neurite outgrowth and axon guidance, we are studying the roles of diffusible factors. We previously profiled the in vitro sensitivity of trigeminal axons to neurotrophins and target-derived diffusible factors and now report on these properties for geniculate axons. GDNF, BDNF, and NT-4, but not NT-3 or NGF, stimulate geniculate axon outgrowth during the ages investigated, embryonic days 12-14. Sensitivity to effective neurotrophins is developmentally regulated and different from that of the trigeminal ganglion. In vitro coculture studies revealed that geniculate axons were repelled by branchial arch explants that were previously shown to be repellent to trigeminal axons (Rochlin and Farbman [1998] J Neurosci 18:6840-6852). In addition, some branchial arch explants and untransfected COS7 cells repelled geniculate but not trigeminal axons. Sema3A, a ligand for neuropilin-1, is effective in repelling geniculate and trigeminal axons, and antineuropilin-1, but not antineuropilin-2, completely blocks the repulsion by arch explants that repel axon outgrowth from both ganglia. Sema3A mRNA is concentrated in branchial arch epithelium at the appropriate time to mediate the repulsion. In Sema3A knockout mice, geniculate and trigeminal afferents explore medial regions of the immature tongue and surrounding territories not explored in heterozygotes, supporting our previous hypothesis that Sema3A-based repulsion mediates the early restriction of sensory afferents away from midline structures
    corecore