4 research outputs found

    Evidence for deep sub-surface flow routing in forested upland Wales : implications for contaminant transport and stream flow generation

    Get PDF
    Upland streamflow generation has traditionally been modelled as a simple rainfall-runoff mechanism. However, recent hydrochemical studies conducted in upland Wales have highlighted the potentially important role of bedrock groundwater in streamflow generation processes. To investigate these processes, a detailed and novel field study was established in the riparian zone and lower hillslopes of the Hafren catchment at Plynlimon, mid-Wales. Results from this study showed groundwater near the river behaving in a complex and most likely confined manner within depth-specific horizons. Rapid responses to rainfall in all boreholes at the study site indicated rapid recharge pathways further upslope. The different flow pathways and travel times influenced the chemical character of groundwaters with depth. Groundwaters were shown to discharge into the stream from the fractured bedrock. A lateral rapid flow horizon was also identified as a fast flow pathway immediately below the soils. This highlighted a mechanism whereby rising groundwater may pick up chemical constituents from the lower soils and transfer them quickly to the stream channel. Restrictions in this horizon resulted in groundwater upwelling into the soils at some locations indicating soil water to be sourced from both rising groundwater and rainfall. The role of bedrock groundwater in upland streamflow generation is far more complicated than previously considered, particularly with respect to residence times and flow pathways. Hence, water quality models in upland catchments that do not take account of the bedrock geology and the groundwater interactions therein will be seriously flawed

    Hydrochemical heterogeneity in an upland catchment: further characterisation of the spatial, temporal and depth variations in soils, streams and groundwaters of the Plynlimon forested catchment, Wales

    Get PDF
    The heterogeneous nature of upland hard-rock catchments in terms of geology, geomorphology, superficial deposits, soil type and land use gives rise to a range of hydrochemical characteristics in stream waters. This is further complicated by the large and often rapid changes in stream flow typical of storm events. The sources of solutes and flow pathways in hard-rock catchments are still poorly understood, in particular the role of bedrock groundwater. Spatial variations in water chemistry are presented for stream waters, soils and groundwaters in the forested Plynlimon catchment of Wales, UK. The results highlight a large degree of spatial heterogeneity in each of these systems. This has major implications for the application of end-member mixing analysis and presents serious problems for modelling in scaling up from study sites to catchment scale. However, such data provide important constraints on sources, flow pathways and residence times within individual catchment compartments, knowledge of which is essential for understanding how such catchments function. The characterisation of sub-surface waters in upland catchments requires a great deal of care during sampling as well as high spatial and temporal resolution of sampling, and further work is required to characterise the Plynlimon catchments fully. Nevertheless, the presence of an active and highly stratified groundwater system is considered important as a source of solutes and water to streams. It also provides a storage medium that is likely to make a major contribution to explaining the strongly damped rainfall Cl and delta H-2 signals measured in the streams

    Penetration of herbicides to groundwater in an unconfined chalk aquifer following normal soil applications

    Get PDF
    The persistence and penetration of the herbicides isoproturon and chlorotoluron in an unconfined chalk aquifer has been monitored over a 4-year period through soil sampling, shallow coring and groundwater monitoring. Chlorotoluron was applied on plots as a marker compound, having never been used previously on that, or surrounding fields. The fieldsite had a 5 degrees slope with soil depths of 0.5 to 1.5 m and a water table between 20 and 5 m from the soil surface. Where the water table was deepest (9-20 m below surface (mbs)) little or no positive herbicide detections were made. However, where the water table was at only 4-5 mbs, a regular pesticide signal of around 0.1 ug/l for isoproturon and chlorotoluron could be distinguished. Over the winter recharge period automatic borehole samplers revealed a series of short-lived peaks of isoproturon and chlorotoluron reaching up to 0.8 ug/l. This is consistent with a preferential flow mechanism operating at this particular part of the field. Such peaks were occurring over 2 years after the last application of these compounds. Shallow coring failed to uncover any significant pesticide pulse moving through the deep unsaturated zone matrix at the fieldsite

    Groundwater nitrogen composition and transformation within a moorland catchment, mid-Wales

    Get PDF
    The importance of upland groundwater systems in providing a medium for nitrogen transformations and processes along flow paths is investigated within the Afon Gwy moorland catchment, Plynlimon, mid-Wales. Dissolved organic nitrogen (DON) was found to be the most abundant form of dissolved nitrogen (N) in most soils and groundwaters, accounting for between 47 and 72% of total dissolved nitrogen in shallow groundwater samples and up to 80% in deeper groundwaters. Groundwater DON may also be an important source of bio-available N in surface waters and marine systems fed by upland catchments. A conceptual model of N processes is proposed based on a detailed study along a transect of nested boreholes and soil suction samplers within the interfluve zone. Shallow groundwater N speciation reflects the soilwater N speciation implying a rapid transport mechanism and good connectivity between the soil and groundwater systems. Median nitrate concentrations were an order of magnitude lower within the soil zone (< 5–31 μg/L) than in the shallow groundwaters (86–746 μg/L). Given the rapid hydrostatic response of the groundwater level within the soil zone, the shallow groundwater system is both a source and sink for dissolved N. Results from dissolved N2O, N2/Ar ratios and dissolved N chemistry suggests that microbial N transformations (denitrification and nitrification) may play an important role in controlling the spatial variation in soil and groundwater N speciation. Reducing conditions within the groundwater and saturated soils of the wet-flush zones on the lower hillslopes, a result of relatively impermeable drift deposits, are also important in controlling N speciation and transformation processes
    corecore