417 research outputs found
Cosmological Surrealism: More than ``Eternal Reality" is Needed
Inflationary Cosmology makes the universe ``eternal" and provides for
recurrent universe creation, ad infinitum -- making it also plausible to assume
that ``our" Big Bang was also preceeded by others, etc.. However, GR tells us
that in the ``parent" universe's reference frame, the newborn universe's
expansion will never start. Our picture of ``reality" in spacetime has to be
enlarged.Comment: 7 pages, TAUP N23
Phase Transition in Conformally Induced Gravity with Torsion
We have considered the quantum behavior of a conformally induced gravity in
the minimal Riemann-Cartan space. The regularized one-loop effective potential
considering the quantum fluctuations of the dilaton and the torsion fields in
the Coleman-Weinberg sector gives a sensible phase transition for an
inflationary phase in De Sitter space. For this effective potential, we have
analyzed the semi-classical equation of motion of the dilaton field in the
slow-rolling regime.Comment: 7pages, no figur
Domain Walls in SU(5)
We consider the Grand Unified SU(5) model with a small or vanishing cubic
term in the adjoint scalar field in the potential. This gives the model an
approximate or exact Z symmetry whose breaking leads to domain walls. The
simplest domain wall has the structure of a kink across which the Higgs field
changes sign () and inside which the full SU(5) is restored.
The kink is shown to be perturbatively unstable for all parameters. We then
construct a domain wall solution that is lighter than the kink and show it to
be perturbatively stable for a range of parameters. The symmetry in the core of
this domain wall is smaller than that outside. The interactions of the domain
wall with magnetic monopole is discussed and it is shown that magnetic
monopoles with certain internal space orientations relative to the wall pass
through the domain wall. Magnetic monopoles in other relative internal space
orientations are likely to be swept away on collision with the domain walls,
suggesting a scenario where the domain walls might act like optical
polarization filters, allowing certain monopole ``polarizations'' to pass
through but not others. As SU(5) domain walls will also be formed at small
values of the cubic coupling, this leads to a very complicated picture of the
evolution of defects after the Grand Unified phase transition.Comment: 6 pages, 1 figure. Animations can be viewed at
http://theory4.phys.cwru.edu/~levon/figures.htm
Scenario of inflationary cosmology from the phenomenological models
Choosing the three phenomenological models of the dynamical cosmological term
, viz., , and
where is the cosmic scale factor, it has been shown by
the method of numerical analysis that the three models are equivalent for the
flat Universe . The evolution plots for dynamical cosmological term
vs. time and also the cosmic scale factor vs. are drawn
here for . A qualitative analysis has been made from the plots which
supports the idea of inflation and hence expanding Universe.Comment: 12 latex pages with 12 figures; Replaced with the revised version;
Accepeted for `J. Non-lin. Frac. Phen. Sci. Engg.
A dynamical dark energy model with a given luminosity distance
It is assumed that the current cosmic acceleration is driven by a scalar
field, the Lagrangian of which is a function of the kinetic term only, and that
the luminosity distance is a given function of the red-shift. Upon comparison
with Baryon Acoustic Oscillations (BAOs) and Cosmic Microwave Background (CMB)
data the parameters of the models are determined, and then the time evolution
of the scalar field is determined by the dynamics using the cosmological
equations. We find that the solution is very different than the corresponding
solution when the non-relativistic matter is ignored, and that the universe
enters the acceleration era at larger red-shift compared to the standard
model.Comment: 4 pages, 3 figures, accepted for publication in GER
Inflation in Gauged 6D Supergravity
In this note we demonstrate that chaotic inflation can naturally be realized
in the context of an anomaly free minimal gauged supergravity in D=6 which has
recently been the focus of some attention. This particular model has a unique
maximally symmetric ground state solution, which leaves
half of the six-dimensional supersymmetries unbroken. In this model, the
inflaton field originates from the complex scalar fields in the D=6
scalar hypermultiplet. The mass and the self couplings of the scalar field are
dictated by the D=6 Lagrangian. The scalar potential has an absolute munimum at
with no undetermined moduli fields. Imposing a mild bound on the
radius of enables us to obtain chaotic inflation. The low eenrgy
equations of motion are shown to be consistent for the range of scalar field
values relevant for inflation.Comment: one reference adde
Conditions for Successful Extended Inflation
We investigate, in a model-independent way, the conditions required to obtain
a satisfactory model of extended inflation in which inflation is brought to an
end by a first-order phase transition. The constraints are that the correct
present strength of the gravitational coupling is obtained, that the present
theory of gravity is satisfactorily close to general relativity, that the
perturbation spectra from inflation are compatible with large scale structure
observations and that the bubble spectrum produced at the phase transition
doesn't conflict with the observed level of microwave background anisotropies.
We demonstrate that these constraints can be summarized in terms of the
behaviour in the conformally related Einstein frame, and can be compactly
illustrated graphically. We confirm the failure of existing models including
the original extended inflation model, and construct models, albeit rather
contrived ones, which satisfy all existing constraints.Comment: 8 pages RevTeX file with one figure incorporated (uses RevTeX and
epsf). Also available by e-mailing ARL, or by WWW at
http://star-www.maps.susx.ac.uk/papers/infcos_papers.html; Revised to include
extra references, results unchanged, to appear Phys Rev
Kinetic Inflation in Stringy and Other Cosmologies
An inflationary epoch driven by the kinetic energy density in a dynamical
Planck mass is studied. In the conformally related Einstein frame it is easiest
to see the demands of successful inflation cannot be satisfied by kinetic
inflation alone. Viewed in the original Jordan-Brans-Dicke frame, the obstacle
is manifest as a kind of graceful exit problem and/or a kind of flatness
problem. These arguments indicate the weakness of only the simplest
formulation. {}From them can be gleaned directions toward successful kinetic
inflation.Comment: 26 pages, LaTeX, CITA-94-2
Bubble collisions and measures of the multiverse
To compute the spectrum of bubble collisions seen by an observer in an
eternally-inflating multiverse, one must choose a measure over the diverging
spacetime volume, including choosing an "initial" hypersurface below which
there are no bubble nucleations. Previous calculations focused on the case
where the initial hypersurface is pushed arbitrarily deep into the past.
Interestingly, the observed spectrum depends on the orientation of the initial
hypersurface, however one's ability observe the effect rapidly decreases with
the ratio of inflationary Hubble rates inside and outside one's bubble. We
investigate whether this conclusion might be avoided under more general
circumstances, in particular placing the observer's bubble near the initial
hypersurface. We find that it is not. As a point of reference, a substantial
appendix reviews relevant aspects of the measure problem of eternal inflation.Comment: 24 pages, two figures, plus 16-page appendix with one figure; v2:
minor improvements and clarifications, conclusions unchanged (version to
appear in JCAP
Measure Problem for Eternal and Non-Eternal Inflation
We study various probability measures for eternal inflation by applying their
regularization prescriptions to models where inflation is not eternal. For
simplicity we work with a toy model describing inflation that can interpolate
between eternal and non-eternal inflation by continuous variation of a
parameter. We investigate whether the predictions of four different measures
(proper time, scale factor cutoff, stationary and causal {diamond}) change
continuously with the change of this parameter. We will show that {only} for
the stationary measure the predictions change continuously. For the proper-time
and the scale factor cutoff, the predictions are strongly discontinuous. For
the causal diamond measure, the predictions are continuous only if the stage of
the slow-roll inflation is sufficiently long.Comment: 9 pages, 4 figure
- …
