We consider the Grand Unified SU(5) model with a small or vanishing cubic
term in the adjoint scalar field in the potential. This gives the model an
approximate or exact Z2 symmetry whose breaking leads to domain walls. The
simplest domain wall has the structure of a kink across which the Higgs field
changes sign (Φ→−Φ) and inside which the full SU(5) is restored.
The kink is shown to be perturbatively unstable for all parameters. We then
construct a domain wall solution that is lighter than the kink and show it to
be perturbatively stable for a range of parameters. The symmetry in the core of
this domain wall is smaller than that outside. The interactions of the domain
wall with magnetic monopole is discussed and it is shown that magnetic
monopoles with certain internal space orientations relative to the wall pass
through the domain wall. Magnetic monopoles in other relative internal space
orientations are likely to be swept away on collision with the domain walls,
suggesting a scenario where the domain walls might act like optical
polarization filters, allowing certain monopole ``polarizations'' to pass
through but not others. As SU(5) domain walls will also be formed at small
values of the cubic coupling, this leads to a very complicated picture of the
evolution of defects after the Grand Unified phase transition.Comment: 6 pages, 1 figure. Animations can be viewed at
http://theory4.phys.cwru.edu/~levon/figures.htm