135 research outputs found

    Dark Energy and the quietness of the Local Hubble Flow

    Get PDF
    The linearity and quietness of the Local (<10Mpc< 10 Mpc) Hubble Flow (LHF) in view of the very clumpy local universe is a long standing puzzle in standard and in open CDM cosmogony. The question addressed in this paper is whether the antigravity component of the recently discovered dark energy can cool the velocity flow enough to provide a solution to this puzzle. We calculate the growth of matter fluctuations in a flat universe containing a fraction ΩX(t0)\Omega_X(t_0) of dark energy obeying the time independent equation of state pX=wρXp_X = w \rho_X. We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value vrms≃40km/secv_{rms}\simeq 40km/sec have been ruled out by other observational tests constraining the dark energy parameters ww and ΩX\Omega_X. Therefore despite the claims of recent qualitative studies dark energy with time independent equation of state can not by itself explain the quietness and linearity of the Local Hubble Flow.Comment: 4 pages, 3 figures, accepted in Phys. Rev. D. Minor corrections, one figure adde

    The imprint of the interaction between dark sectors in galaxy clusters

    Full text link
    Based on perturbation theory, we study the dynamics of how dark matter and dark energy in the collapsing system approach dynamical equilibrium while interacting. We find that the interaction between dark sectors cannot ensure the dark energy to fully cluster along with dark, leading to the energy non-conservation problem in the collapsing system We examine the cluster number counts dependence on the interaction between dark sectors. Furthermore, we analyze how dark energy inhomogeneities affect cluster abundances. It is shown that cluster number counts can provide specific signature of dark sectors interaction and dark energy inhomogeneities.Comment: revised version. New treatment has been provided on studying the structure formation in the spherical collapsing system where DE does not cluster together with DM. Accepted for publication in JCA

    The imprint of the interaction between dark sectors in galaxy clusters

    Full text link
    Based on perturbation theory, we study the dynamics of how dark matter and dark energy in the collapsing system approach dynamical equilibrium while interacting. We find that the interaction between dark sectors cannot ensure the dark energy to fully cluster along with dark, leading to the energy non-conservation problem in the collapsing system We examine the cluster number counts dependence on the interaction between dark sectors. Furthermore, we analyze how dark energy inhomogeneities affect cluster abundances. It is shown that cluster number counts can provide specific signature of dark sectors interaction and dark energy inhomogeneities.Comment: revised version. New treatment has been provided on studying the structure formation in the spherical collapsing system where DE does not cluster together with DM. Accepted for publication in JCA

    Low-scale Quintessential Inflation

    Get PDF
    In quintessential inflationary model, the same master field that drives inflation becomes, later on, the dynamical source of the (present) accelerated expansion. Quintessential inflationary models require a curvature scale at the end of inflation around 10−6MP10^{-6}M_{\rm P} in order to explain the large scale fluctuations observed in the microwave sky. If the curvature scale at the end of inflation is much smaller than 10−6MP10^{-6}M_{\rm P}, the large scale adiabatic mode may be produced thanks to the relaxation of a scalar degree of freedom, which will be generically denoted, according to the recent terminology, as the curvaton field. The production of the adiabatic mode is analysed in detail in the case of the minimal quintessential inflationary model originally proposed by Peebles and Vilenkin.Comment: 25 pages; 5 figure

    Perturbation evolution with a non-minimally coupled scalar field

    Get PDF
    We recently proposed a simple dilaton-derived quintessence model in which the scalar field was non-minimally coupled to cold dark matter, but not to `visible' matter. Such couplings can be attributed to the dilaton in the low energy limit of string theory, beyond tree level. In this paper we discuss the implications of such a model on structure formation, looking at its impact on matter perturbations and CMB anisotropies. We find that the model only deviates from Λ\LambdaCDM and minimally coupled theories at late times, and is well fitted to current observational data. The signature left by the coupling, when it breaks degeneracy at late times, presents a valuable opportunity to constrain non-minimal couplings given the wealth of new observational data promised in the near future.Comment: Version appearing in Physical Review D. 10 pages, 9 figs. Comparison with SN1a and projected MAP results, and appendix adde

    Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories

    Get PDF
    We present cosmological perturbations of kinetic components based on relativistic Boltzmann equations in the context of generalized gravity theories. Our general theory considers an arbitrary number of scalar fields generally coupled with the gravity, an arbitrary number of mutually interacting hydrodynamic fluids, and components described by the relativistic Boltzmann equations like massive/massless collisionless particles and the photon with the accompanying polarizations. We also include direct interactions among fluids and fields. The background FLRW model includes the general spatial curvature and the cosmological constant. We consider three different types of perturbations, and all the scalar-type perturbation equations are arranged in a gauge-ready form so that one can implement easily the convenient gauge conditions depending on the situation. In the numerical calculation of the Boltzmann equations we have implemented four different gauge conditions in a gauge-ready manner where two of them are new. By comparing solutions solved separately in different gauge conditions we can naturally check the numerical accuracy.Comment: 26 pages, 9 figures, revised thoroughly, to appear in Phys. Rev.

    Tension between SN and BAO: current status and future forecasts

    Full text link
    Using real and synthetic Type Ia SNe (SNeIa) and baryon acoustic oscillations (BAO) data representing current observations forecasts, this paper investigates the tension between those probes in the dark energy equation of state (EoS) reconstruction considering the well known CPL model and Wang's low correlation reformulation. In particular, here we present simulations of BAO data from both the the radial and transverse directions. We also explore the influence of priors on Omega_m and Omega_b on the tension issue, by considering 1-sigma deviations in either one or both of them. Our results indicate that for some priors there is no tension between a single dataset (either SNeIa or BAO) and their combination (SNeIa+BAO). Our criterion to discern the existence of tension (sigma-distance) is also useful to establish which is the dataset with most constraining power; in this respect SNeIa and BAO data switch roles when current and future data are considered, as forecasts predict and spectacular quality improvement on BAO data. We also find that the results on the tension are blind to the way the CPL model is addressed: there is a perfect match between the original formulation and that by the low correlation optimized, but the errors on the parameters are much narrower in all cases of our exhaustive exploration, thus serving the purpose of stressing the convenience of this reparametrization.Comment: 21 pages, under review in JCA

    Early-universe constraints on a Primordial Scaling Field

    Full text link
    In the past years 'quintessence' models have been considered which can produce the accelerated expansion in the universe suggested by recent astronomical observations. One of the key differences between quintessence and a cosmological constant is that the energy density in quintessence, Ωϕ\Omega_\phi, could be a significant fraction of the overall energy even in the early universe, while the cosmological constant will be dynamically relevant only at late times. We use standard Big Bang Nucleosynthesis and the observed abundances of primordial nuclides to put constraints on Ωϕ\Omega_\phi at temperatures near T∌1MeVT \sim 1MeV. We point out that current experimental data does not support the presence of such a field, providing the strong constraint Ωϕ(MeV)<0.045\Omega_\phi(MeV) < 0.045 at 2σ2\sigma C.L. and strengthening previous results. We also consider the effect a scaling field has on CMB anisotropies using the recent data from Boomerang and DASI, providing the CMB constraint Ωϕ≀0.39\Omega_\phi \le 0.39 at 2σ2\sigma during the radiation dominated epoch.Comment: 5 pages, 4 figures. The revised version includes the new Boomerang and DASI dat
    • 

    corecore