58 research outputs found

    Axial anomaly and the precise value of the π02γ\pi^0 \to 2 \gamma decay width

    Get PDF
    The anomaly in the vacuum expectation value of the product of axial and two vector currents (AVV) in QCD is investigated. The goal is to determine from its value the π02γ\pi^0 \to 2 \gamma decay width with high precision. The sum rule for AVV formfactor is studied. The difference fπ0fπ+f_{\pi^0} - f_{\pi^+} caused by strong interaction is calculated and appears to be small. The π0η\pi^0 - \eta mixing is accounted. The π02γ\pi^0 \to 2 \gamma decay width determined theoretically from the axial anomaly is found to be Γ(π02γ)=7.93eV\Gamma(\pi^0 \to 2 \gamma) = 7.93 eV with an error 1.5\sim 1.5%. The measurement of the π02γ\pi^0 \to 2 \gamma decay width at the same level of accuracy would allow one to achieve a high precision test of QCD.Comment: 8 pages, few misprints are correcte

    Non-minimal neutral Higgs bosons at LEP2

    Get PDF
    We study the phenomenology of the neutral Higgs sector of a non-SUSY non-minimal Standard Model. Models with more than one Higgs doublet are possible, and may contain neutral Higgs scalars with branching ratios significantly different to those of the Minimal Standard Model Higgs boson. We show how these differences may be exploited at LEP2 in order to distinguish the non-minimal Standard Model from the minimal version.Comment: 12 pages inc 4 figures, Latex, to appear in Physics Letters

    Quantum corrections to the conductivity of fermion - gauge field models: Application to half filled Landau level and high-TcT_c superconductors

    Full text link
    We calculate the Altshuler-Aronov type quantum correction to the conductivity of 2d2d charge carriers in a random potential (or random magnetic field) coupled to a transverse gauge field. The gauge fields considered simulate the effect of the Coulomb interaction for the fractional quantum Hall state at half filling and for the tJt-J model of high-TcT_c superconducting compounds. We find an unusually large quantum correction varying linearly or quadratically with the logarithm of temperature, in different temperature regimes.Comment: 12 pages REVTEX, 1 figure. The figure is added and minor misprints are correcte

    Spinless particle in rapidly fluctuating random magnetic field

    Full text link
    We study a two-dimensional spinless particle in a disordered gaussian magnetic field with short time fluctuations, by means of the evolution equation for the density matrix ; in this description the two coordinates are associated with the retarded and advanced paths respectively. The static part of the vector potential correlator is assumed to grow with distance with a power hh; the case h=0h = 0 corresponds to a δ\delta-correlated magnetic field, and h=2h = 2 to free massless field. The value h=2h = 2 separates two different regimes, diffusion and logarithmic growth respectively. When h<2h < 2 the baricentric coordinate r=(1/2)(x(1)+x(2))r = (1/2)(x^{(1)} + x^{(2)}) diffuses with a coefficient DrD_{r} proportional to xhx^{-h}, where xx is the relative coordinate: x=x(1)x(2)x = x^{(1)} - x^{(2)}. As h>2h > 2 the correlator of the magnetic field is a power of distance with positive exponent; then the coefficient DrD_{r} scales as x2x^{-2}. The density matrix is a function of rr and x2/tx^2/t,and its width in rr grows for large times proportionally to log(t/x2)log(t/x^2).Comment: latex2e; 2 figure

    Strong compensation of the quantum fluctuation corrections in clean superconductor

    Full text link
    The theory of fluctuation conductivity for an arbitrary impurity concentration including ultra-clean limit is developed. It is demonstrated that the formal divergency of the fluctuation density of states contribution obtained previously for the clean case is removed by the correct treatment of the non-local ballistic electron scattering. We show that in the ultra-clean limit (TτTcTTcT\tau \gg \sqrt{\frac{T_c}{T-T_c}}) the density-of-states quantum corrections are canceled by the Maki-Thompson term and only quasi-classical paraconductivity remains.Comment: 7 pages 2 figure

    Theory of Shubnikov--De Haas Oscillations Around the ν=1/2\nu=1/2 Filling Factor of the Landau Level: Effect of Gauge Field Fluctuations

    Full text link
    We present a theory of magnetooscillations around the ν=1/2\nu =1/2 Landau level filling factor based on a model with a fluctuating Chern--Simons field. The quasiclassical treatment of the problem is appropriate and leads to an unconventional exp[(π/ωcτ1/2)4]\exp\left[-(\pi/\omega_c\tau^*_{1/2})^4\right] behavior of the amplitude of oscillations. This result is in good qualitative agreement with available experimental data.Comment: Revtex, 4 pages, 1 figure attached as PostScript fil

    Analysis of Ωb(bss)\Omega_b^-(bss) and Ωc0(css)\Omega_c^0(css) with QCD sum rules

    Full text link
    In this article, we calculate the masses and the pole residues of the 1/2+{1/2}^+ heavy baryons Ωc0(css)\Omega_c^0(css) and Ωb(bss)\Omega_b^-(bss) with the QCD sum rules. The numerical values MΩc0=(2.72±0.18)GeVM_{\Omega_c^0}=(2.72\pm0.18) \rm{GeV} (or MΩc0=(2.71±0.18)GeVM_{\Omega_c^0}=(2.71\pm0.18) \rm{GeV}) and MΩb=(6.13±0.12)GeVM_{\Omega_b^-}=(6.13\pm0.12) \rm{GeV} (or MΩb=(6.18±0.13)GeVM_{\Omega_b^-}=(6.18\pm0.13) \rm{GeV}) are in good agreement with the experimental data.Comment: 18 pages, 18 figures, slight revisio

    Magnetoresistance of Two-Dimensional Fermions in a Random Magnetic Field

    Get PDF
    We perform a semiclassical calculation of the magnetoresistance of spinless two-dimensional fermions in a long-range correlated random magnetic field. In the regime relevant for the problem of the half filled Landau level the perturbative Born approximation fails and we develop a new method of solving the Boltzmann equation beyond the relaxation time approximation. In absence of interactions, electron density modulations, in-plane fields, and Fermi surface anisotropy we obtain a quadratic negative magnetoresistance in the weak field limit.Comment: 12 pages, Latex, no figures, Nordita repor

    Hadronic EDMs, the Weinberg Operator, and Light Gluinos

    Full text link
    We re-examine questions concerning the contribution of the three-gluon Weinberg operator to the electric dipole moment of the neutron, and provide several QCD sum rule-based arguments that the result is smaller than - but nevertheless consistent with - estimates which invoke naive dimensional analysis. We also point out a regime of the MSSM parameter space with light gluinos for which this operator provides the dominant contribution to the neutron electric dipole moment due to enhancement via the dimension five color electric dipole moment of the gluino.Comment: 6 pages, RevTeX, 3 figures; v2: references added; v3: typos corrected, to appear in Phys. Rev.

    Baryon Tri-local Interpolating Fields

    Full text link
    We systematically investigate tri-local (non-local) three-quark baryon fields with U_L(2)*U_R(2) chiral symmetry, according to their Lorentz and isospin (flavor) group representations. We note that they can also be called as "nucleon wave functions" due to this full non-locality. We study their chiral transformation properties and find all the possible chiral multiplets consisting J=1/2 and J=3/2 baryon fields. We find that the axial coupling constant |g_A| = 5/3 is only for nucleon fields belonging to the chiral representation (1/2,1)+(1,1/2) which contains both nucleon fields and Delta fields. Moreover, all the nucleon fields belonging to this representation have |g_A| = 5/3.Comment: 8 pages, 3 tables, accepted by EPJ
    corecore