14 research outputs found

    Higher-order relativistic corrections to the vibration–rotation levels of H2S

    Get PDF
    Relativistic corrections beyond the simple one-electron mass–velocity–Darwin (MVD1) approximation to the ground-state electronic energy of H2S are determined at over 250 geometries. The corrections considered include the two-electron Darwin, the Gaunt and Breit corrections, and the one-electron Lamb shift. Fitted correction surfaces are constructed and used with an accurate ab initio nonrelativistic Born–Oppenheimer potential, determined previously (J. Chem. Phys. 115 (2001) 1229), to calculate vibrational and rotational levels for H232S. The calculations suggest that one- and two-electron relativistic corrections have a noticable influence on the levels of H2S. As for water, the effects considered have markedly different characteristics for the stretching and bending states

    Two-electron relativistic corrections to the potential energy surface, and vibration-rotation levels of water

    Get PDF
    Two-electron relativistic corrections to the ground-state electronic energy of water are determined as a function of geometry at over 300 points. The corrections include the two-electron Darwin term (D2) of the Coulomb–Pauli Hamiltonian, obtained at the cc-pVQZ CCSD(T) level of theory, as well as the Gaunt and Breit corrections, calculated perturbationally using four-component fully variational Dirac–Hartree–Fock (DHF) wavefunctions and two different basis sets. Based on the calculated energy points, fitted relativistic correction surfaces are constructed. These surfaces are used with a high-accuracy ab initio nonrelativistic Born–Oppenheimer (BO) potential energy hypersurface to calculate vibrational band origins and rotational term values for H216O. The calculations suggest that these two-electron relativistic corrections, which go beyond the usual kinetic relativistic effects and which have so far been neglected in rovibrational calculations on light many-electron molecular systems, have a substantial influence on the rotation–vibration levels of water. The three effects considered have markedly different characteristics for the stretching and bending levels, which often leads to fortuitous cancellation of errors. The effect of the Breit interaction on the rovibrational levels is intermediate between the effect of the kinetic relativistic correction and that of the one-electron Lamb-shift effect

    On equilibrium structures of the water molecule

    Get PDF
    Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born-Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky [ ibid. 299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born-Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3x10(-5) A and 0.02 degrees for water. The mass-independent [Born-Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is r(e)(BO)=0.957 82 A and theta(e)(BO)=104.48(5)degrees, respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of (H2O)-O-16 is r(e)(ad)=0.957 85 A and theta(e)(ad)=104.50(0)degrees, respectively, while those of (D2O)-O-16 are r(e)(ad)=0.957 83 A and theta(e)(ad)=104.49(0)degrees. Pure ab initio prediction of J=1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002 cm(-1) for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05 cm(-1) (or the lower ones to better than 0.0035 cm(-1)) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A(0) and B-0. The small residual deviations in the effective rotational constants are due to centrifugal distortion, electronic, and non-Born-Oppenheimer effects. The spectroscopic (nonadiabatic) equilibrium structural parameters of (H2O)-O-16, obtained from experimentally determined A(0)(') and B-0(') rotational constants corrected empirically to obtain equilibrium rotational constants, are r(e)(sp)=0.957 77 A and theta(e)(sp)=104.48 degrees

    C2HF5S Ethynylpentafluorosulfur

    No full text

    Network-Based Design of Near-Infrared Lamb-Dip Experiments and the Determination of Pure Rotational Energies of H218O at kHz Accuracy

    No full text
    © 2021 Author(s).Taking advantage of the extreme absolute accuracy, sensitivity, and resolution of noise-immune-cavity-enhanced optical-heterodyne-molecular spectroscopy (NICE-OHMS), a variant of frequency-comb-assisted Lamb-dip saturation-spectroscopy techniques, the rotational quantum-level structure of both nuclear-spin isomers of H218O is established with an average accuracy of 2.5 kHz. Altogether, 195 carefully selected rovibrational transitions are probed. The ultrahigh sensitivity of NICE-OHMS permits the observation of lines with room-temperature absorption intensities as low as 10−27 cm molecule−1, while the superb resolution enables the detection of a doublet with a separation of only 286(17) kHz. While the NICE-OHMS experiments are performed in the near-infrared window of 7000-7350 cm−1, the lines observed allow the determination of all the pure rotational energies of H218O corresponding to J values up to 8, where J is the total rotational quantum number. Both network and quantum theory have been employed to facilitate the measurement campaign and the full exploitation of the lines resolved. For example, to minimize the experimental effort, the transitions targeted for observation were selected via the spectroscopic-network-assisted precision spectroscopy (SNAPS) scheme built upon the extended Ritz principle, the theory of spectroscopic networks, and an underlying dataset of quantum chemical origin. To ensure the overall connection of the ultraprecise rovibrational lines for both nuclear-spin isomers of H218O, the NICE-OHMS transitions are augmented with six accurate microwave lines taken from the literature. To produce absolute ortho-H218O energies, the lowest ortho energy is determined to be 23.754 904 61(19) cm−1. A reference, benchmark-quality line list of 1546 transitions, deduced from the ultrahigh-accuracy energy values determined in this study, provides calibration standards for future high-resolution spectroscopic experiments between 0-1250 and 5900-8380 cm−

    Parity-pair-mixing effects in nonlinear spectroscopy of HDO

    Get PDF
    © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.A non-linear spectroscopic study of the HDO molecule is performed in the wavelength range of 1.36–1.42 µm using noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy (NICE-OHMS). More than 100 rovibrational Lamb dips are recorded, with an experimental precision of 2–20 kHz, related to the first overtone of the O–H stretch fundamental of HD16O and HD18O. Significant perturbations, including distortions, shifts, and splittings, have been observed for a number of Lamb dips. These spectral perturbations are traced back to an AC-Stark effect, arising due to the strong laser field applied in all saturation-spectroscopy experiments. The AC-Stark effect mixes parity pairs, that is pairs of rovibrational states whose assignment differs solely in the Kc quantum number, where Kc is part of the standard JKaKc asymmetric-top rotational label. Parity-pair mixing seems to be especially large for parity pairs with Ka ≥ 3, whereby their energy splittings become as small as a few MHz, resulting in multi-component asymmetric Lamb-dip profiles of gradually increasing complexity. These complex profiles often include crossover resonances. This effect is well known in saturation spectroscopy, but has not been reported in combination with parity-pair mixing. Parity-pair mixing is not seen in H216O and H218O, because their parity pairs correspond to ortho and para nuclear-spin isomers, whose interaction is prohibited. Despite the frequency shifts observed for HD16O and HD18O, the absolute accuracy of the detected transitions still exceeds that achievable by Doppler-limited techniques
    corecore