25 research outputs found
Reversible stretching of homopolymers and random heteropolymers
We have analyzed the equilibrium response of chain molecules to stretching.
For a homogeneous sequence of monomers, the induced transition from compact
globule to extended coil below the -temperature is predicted to be
sharp. For random sequences, however, the transition may be smoothed by a
prevalence of necklace-like structures, in which globular regions and coil
regions coexist in a single chain. As we show in the context of a random
copolymer, preferential solvation of one monomer type lends stability to such
structures. The range of stretching forces over which necklaces are stable is
sensitive to chain length as well as sequence statistics.Comment: 14 pages, 4 figure
Nanoscale Mechanical Characterisation of Amyloid Fibrils Discovered in a Natural Adhesive
Using the atomic force microscope, we have investigated the nanoscale mechanical response of the attachment adhesive of the terrestrial alga Prasiola linearis (Prasiolales, Chlorophyta). We were able to locate and extend highly ordered mechanical structures directly from the natural adhesive matrix of the living plant. The in vivo mechanical response of the structured biopolymer often displayed the repetitive sawtooth force-extension characteristics of a material exhibiting high mechanical strength at the molecular level. Mechanical and histological evidence leads us to propose a mechanism for mechanical strength in our sample based on amyloid fibrils. These proteinaceous, pleated β-sheet complexes are usually associated with neurodegenerative diseases. However, we now conclude that the amyloid protein quaternary structures detected in our material should be considered as a possible generic mechanism for mechanical strength in natural adhesives
Hydrophobic ions amplify the capacitive currents used to measure exocytotic fusion
The detection of exocytotic fusion in patch-clamped secretory cells depends on measuring an increase in the cell membrane capacitance as new membrane is added to the plasma membrane. However, in the majority of secretory cells, secretory vesicles are too small (< 200 nm in diameter) to cause a detectable signal. We have found that incubations of normal mouse mast cells with the hydrophobic anion dipicrylamine (DPA), increases cell membrane capacitance by about three times. The large capacitive current induced by DPA was voltage-dependent, having a maximum value at -10 mV. The DPA-induced charge movement could be described by a single barrier model in which the DPA molecules move between two stable states in the bulk lipid matrix of the membrane. More importantly, the DPA treatment produced a sevenfold increase in the size of the capacitance steps observed upon the exocytotic fusion of single secretory granules. A similar amplification of DPA on the secretory vesicle capacitance was observed in a cell with larger (< or = 5 microns in diameter) or with smaller secretory granules (< 250 nm in diameter). Additionally, the increased granule membrane capacitance enlarged the transient capacitive discharge measured upon formation of a fusion pore in normal mast cell granules. Our results indicate that hydrophobic ions provide an important tool for high resolution studies of membrane capacitance
Patch clamp studies of single intact secretory granules
The membrane of secretory granules is involved in the molecular events that cause exocytotic fusion. Several of the proteins that have been purified from the membrane of secretory granules form ion channels when they are reconstituted in lipid bilayers and, therefore, have been thought to form part of the molecular structure of the exocytotic fusion pore. We have used the patch clamp technique to study ion conductances in single isolated secretory granules from beige mouse mast cells. We found that the membrane of the intact granule had a conductance of < 50 pS. No abrupt changes in current corresponding to the opening and closing of ion channels were observed, even under conditions where exocytotic fusion occurred. However, mechanical tension or a large voltage pulse caused the breakdown of the granule membrane resulting in the abrupt opening of a pore with an ion conductance of about 1 nS that fluctuated rapidly and could expand to an immeasurably large conductance or close completely. Surprisingly, the behavior of these pores resembled the pattern of conductance changes of exocytotic fusion pores observed in degranulating beige mast cells. This similarity supports the view that the earliest fusion pore is formed upon the breakdown of a bilayer such as that formed during hemifusion
Simultaneous capacitance and amperometric measurements of exocytosis: a comparison
We measured the exocytotic response induced by flash photolysis of caged compounds in isolated mast cells and chromaffin cells. Vesicle fusion was measured by monitoring the cell membrane capacitance. The release of vesicular contents was followed by amperometry. In response to a GTP gamma S stimulus we found that the time integral of the amperometric current could be superimposed on the capacitance trace. This shows that the integrated amperometric signal provides an alternative method of measuring the extent and kinetics of the secretory response. Very different results were obtained when photolysis of caged Ca2+ (DM-nitrophen) was used to stimulate secretion. In mast cells, there was an immediate, graded increase in membrane capacitance that was followed by step increases (indicative of granule fusion). During the initial phase of the capacitance increases, no release of oxidizable secretory products was detected. In chromaffin cells we also observed a considerable delay between increases in capacitance, triggered by uncaging Ca2+, and the release of oxidizable secretory products. Here we demonstrate that there can be large increases in the membrane capacitance of a secretory cell, triggered by flash photolysis of DM-nitrophen, which indicate events that are not due to the fusion of granules containing oxidizable substances. These results show that increases in capacitance that are not resolved as steps cannot be readily interpreted as secretory events unless they are confirmed independently
Events leading to the opening and closing of the exocytotic fusion pore have markedly different temperature dependencies. Kinetic analysis of single fusion events in patch-clamped mouse mast cells
The earliest event in exocytosis is the formation of a fusion pore, an aqueous channel that connects the lumen of a secretory granule with the extracellular space. We can observe the formation of individual fusion pores and their subsequent dilation or closure by measuring the changes in the admittance of patch-clamped mast cells during GTP gamma S-stimulated exocytotic fusion. To investigate the molecular structure of the fusion pore, we have studied the temperature dependency of the rate constants for fusion pore formation and closure. An Arrhenius plot of the rate of fusion pore formation shows a simple linear relationship with an apparent activation energy of 23 kcal/mol. In contrast, the Arrhenius plot of the rate of closure of the fusion pore is discontinuous, with the break at approximately 13 degrees C. Above the break point, the rate of closure has a weak temperature dependence (7 kcal/mol), whereas below 13 degrees C the rate of closure is temperature independent. This type of temperature dependency is characteristic of events that depend on diffusion in a lipid phase that undergoes a fluid-solid phase transition. We propose that the formation of the fusion pore is regulated by the conformational change of a molecular structure with a high activation energy, whereas the closure of the fusion pore is regulated by lipids that become phase separated at 13 degrees C
