598 research outputs found
Pressure dependence of the superconducting transition temperature in CYb and CCa
We have studied the evolution, with hydrostatic pressure, of the recently
discovered superconductivity in the graphite intercalation compounds CYb
and CCa. We present pressure-temperature phase diagrams, for both
superconductors, established by electrical transport and magnetization
measurements. In the range 0-1.2 GPa the superconducting transition temperature
increases linearly with pressure in both materials with
and for CYb and CCa respectively. The
transition temperature in CYb, which has beenmeasured up to 2.3 GPa,
reaches a peak at around 1.8 GPa and then starts to drop. We also discuss how
this pressure dependence may be explained within a plasmon pairing mechanism.Comment: 4 pages, 3 figure
Using the quantum probability ranking principle to rank interdependent documents
A known limitation of the Probability Ranking Principle (PRP) is that it does not cater for dependence between documents. Recently, the Quantum Probability Ranking Principle (QPRP) has been proposed, which implicitly captures dependencies between documents through “quantum interference”. This paper explores whether this new ranking principle leads to improved performance for subtopic retrieval, where novelty and diversity is required. In a thorough empirical investigation, models based on the PRP, as well as other recently proposed ranking strategies for subtopic retrieval (i.e. Maximal Marginal Relevance (MMR) and Portfolio Theory(PT)), are compared against the QPRP. On the given task, it is shown that the QPRP outperforms these other ranking strategies. And unlike MMR and PT, one of the main advantages of the QPRP is that no parameter estimation/tuning is required; making the QPRP both simple and effective. This research demonstrates that the application of quantum theory to problems within information retrieval can lead to significant improvements
Microglial morphology in the somatosensory cortex across lifespan. A quantitative study.
Microglia are long-lived cells that constantly monitor their microenvironment. To accomplish this task, they constantly change their morphology both in the short and long term under physiological conditions. This makes the process of quantifying physiological microglial morphology difficult.
By using a semi-manual and a semi-automatic method to assess fine changes in cortical microglia morphology, we were able to quantify microglia changes in number, surveillance and branch tree starting from the fifth postnatal day to 2 years of life. We were able to identify a fluctuating behavior of most analyzed parameters characterized by a rapid cellular maturation, followed by a long period of relative stable morphology during the adult life with a final convergence to an aged phenotype. Detailed cellular arborization analysis revealed age-induced differences in microglia morphology, with mean branch length and the number of terminal processes changing constantly over time.
Our study provides insight into microglia morphology changes across lifespan under physiological conditions. We were able to highlight, that due to the dynamic nature of microglia several morphological parameters are needed to establish the physiological state of these cells
Theory of Andreev reflection in a junction with a strongly disordered semiconductor
We study the conduction of a {\sl N~-~Sm~-~S} junction, where {\sl Sm} is a
strongly disordered semiconductor. The differential conductance of this
{\sl N~-~Sm~-~S} structure is predicted to have a sharp peak at . Unlike
the case of a weakly disordered system, this feature persists even in the
absence of an additional (Schottky) barrier on the boundary. The zero-bias
conductance of such a junction is smaller only by a numerical factor
than the conductance in the normal state . Implications for experiments on
gated heterostructures with superconducting leads are discussed.Comment: 4 pages, 2 figures, to appear in Rapid Communication section of Phys.
Rev.
Thermoelectric effects in superconducting proximity structures
Attaching a superconductor in good contact with a normal metal makes rise to
a proximity effect where the superconducting correlations leak into the normal
metal. An additional contact close to the first one makes it possible to carry
a supercurrent through the metal. Forcing this supercurrent flow along with an
additional quasiparticle current from one or many normal-metal reservoirs makes
rise to many interesting effects. The supercurrent can be used to tune the
local energy distribution function of the electrons. This mechanism also leads
to finite thermoelectric effects even in the presence of electron-hole
symmetry. Here we review these effects and discuss to which extent the existing
observations of thermoelectric effects in metallic samples can be explained
through the use of the dirty-limit quasiclassical theory.Comment: 14 pages, 10 figures. 374th WE-Heraus seminar: Spin physics of
superconducting heterostructures, Bad Honnef, 200
Self-consistent scattering description of transport in normal-superconductor structures
We present a scattering description of transport in several
normal-superconductor structures. We show that the related requirements of
self-consistency and current conservation introduce qualitative changes in the
transport behavior when the current in the superconductor is not negligible.
The energy thresholds for quasiparticle propagation in the superconductor are
sensitive to the existence of condensate flow (). This dependence is
responsible for a rich variety of transport regimes, including a voltage range
in which only Andreev transmission is possible at the interfaces, and a state
of gapless superconductivity which may survive up to high voltages if
temperature is low. The two main effects of current conservation are a shift
towards lower voltages of the first peak in the differential conductance and an
enhancement of current caused by the greater availability of charge
transmitting scattering channels.Comment: 31 pages, 10 PS figures, Latex file, psfig.sty file is added. To
appear in Phys. Rev. B (Jan 97
Electromigration-Induced Flow of Islands and Voids on the Cu(001) Surface
Electromigration-induced flow of islands and voids on the Cu(001) surface is
studied at the atomic scale. The basic drift mechanisms are identified using a
complete set of energy barriers for adatom hopping on the Cu(001) surface,
combined with kinetic Monte Carlo simulations. The energy barriers are
calculated by the embedded atom method, and parameterized using a simple model.
The dependence of the flow on the temperature, the size of the clusters, and
the strength of the applied field is obtained. For both islands and voids it is
found that edge diffusion is the dominant mass-transport mechanism. The rate
limiting steps are identified. For both islands and voids they involve
detachment of atoms from corners into the adjacent edge. The energy barriers
for these moves are found to be in good agreement with the activation energy
for island/void drift obtained from Arrhenius analysis of the simulation
results. The relevance of the results to other FCC(001) metal surfaces and
their experimental implications are discussed.Comment: 9 pages, 13 ps figure
Spin current in ferromagnet/insulator/superconductor junctions
A theory of spin polarized tunneling spectroscopy based on a scattering
theory is given for tunneling junctions between ferromagnets and d-wave
superconductors. The spin filtering effect of an exchange field in the
insulator is also treated. We clarify that the properties of the Andreev
reflection are largely modified due to a presence of an exchange field in the
ferromagnets, and consequently the Andreev reflected quasiparticle shows an
evanescent-wave behavior depending on the injection angle of the quasiparticle.
Conductance formulas for the spin current as well as the charge current are
given as a function of the applied voltage and the spin-polarization in the
ferromagnet for arbitrary barrier heights. It is shown that the surface bound
states do not contribute to the spin current and that the zero-bias conductance
peak expected for a d-wave superconductor splits into two peaks under the
influence of the exchange interaction in the insulator.Comment: 14 pages, 11 figure
Variability in the efficacy of a standardized antenatal steroid treatment is not due to maternal or fetal plasma drug levels. Evidence from a sheep model of pregnancy.
Background
Antenatal steroids (ANS) are standard of care for women judged to be at imminent risk of preterm delivery. Worldwide, there is significant variation in ANS dosing strategy, selection for treatment criteria, and agent choice. This, combined with very limited optimization of ANS use per se means that treatment efficacy is highly variable and the rate of respiratory distress syndrome is decreased perhaps as little as 40%. In some cases, ANS use is associated with limited benefit and potential harm.
Objective
We hypothesized that individual differences in maternal and fetal steroid exposure would contribute to observed variability in ANS treatment efficacy. Using a chronically catheterized sheep model of pregnancy, we aimed to explore the relationship between materno-fetal steroid exposure and ANS treatment efficacy as determined by functional lung maturation in preterm lambs undergoing ventilation.
Methods
Ewes carrying a single fetus had surgery to catheterize a fetal and maternal jugular vein at 119 days’ gestation. Animals recovered for 24h before being randomized to either: i) a single maternal intramuscular injection (IM) of 2ml saline (Negative Control Group, n=10); or ii) a single maternal IM of 0.25mg/kg betamethasone phosphate + acetate (ANS Group, n=20). Serial maternal and fetal plasma samples were collected from each animal over 48h before fetuses were delivered and ventilated for 30 minutes. Total and free plasma betamethasone concentration was measured by mass spectrometry. Fetal lung tissue was collected for analysis using quantitative polymerase chain reaction.
Results
One animal of the Control Group and one animal from the ANS Group had did not complete their treatment protocol and were removed from analyses. Animals in the ANS Group were divided into a Responder (n=12/19) Sub-Group and a Non-Responder Sub-Group (n=7/19) using a cut-off of a PaCO2 at 30 minutes ventilation within 2SD of the mean value from saline-treated Negative Control Group animals. While ANS improved fetal lung maturation in the undivided ANS group, and in the Responder Sub-Group both physiologically (blood gas and ventilation related data) and biochemically (mRNA expression related to fetal lung maturation), these values were not improved relative to saline-treated Control Group animals in the ANS Non-Responder Sub-Group. Interestingly, no differences in betamethasone distribution, clearance, or protein binding were identified between the ANS Responder and Non-Responder Sub-Groups.
Conclusion
This study correlated individual materno-fetal steroid exposures with preterm lung maturation as determined by pulmonary ventilation. Herein, approximately 40% of preterm lambs exposed to antenatal steroids had lung maturation not significantly different to saline-treated Control Group animals. These non-responsive animals received maternal and fetal betamethasone exposures identical to animals that had a significant improvement in functional lung maturation. These data suggest that the efficacy of ANS therapy is not solely determined by materno-fetal drug levels, and that individual fetal or maternal factors may play a role in determining treatment outcomes in response to glucocorticoid-driven signaling
- …