16 research outputs found

    Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length

    Get PDF
    Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for ~8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ("atmospheric delay"). Here we discuss observational evidence for the existence of such errors in the previously used models for the atmospheric delay and develop a new "mapping" function for the elevation angle dependence of this delay. The delay predicted by this new mapping function differs from ray trace results by less than ~5 mm, at all elevations down to 5° elevation, and introduces errors into the estimates of baseline length of •< 1 cm, for the multistation intercontinental experiment analyzed here

    Measuring the 3D Clustering of Undetected Galaxies Through Cross Correlation of their Cumulative Flux Fluctuations from Multiple Spectral Lines

    Full text link
    We discuss a method for detecting the emission from high redshift galaxies by cross correlating flux fluctuations from multiple spectral lines. If one can fit and subtract away the continuum emission with a smooth function of frequency, the remaining signal contains fluctuations of flux with frequency and angle from line emitting galaxies. Over a particular small range of observed frequencies, these fluctuations will originate from sources corresponding to a series of different redshifts, one for each emission line. It is possible to statistically isolate the fluctuations at a particular redshift by cross correlating emission originating from the same redshift, but in different emission lines. This technique will allow detection of clustering fluctuations from the faintest galaxies which individually cannot be detected, but which contribute substantially to the total signal due to their large numbers. We describe these fluctuations quantitatively through the line cross power spectrum. As an example of a particular application of this technique, we calculate the signal-to-noise ratio for a measurement of the cross power spectrum of the OI(63 micron) and OIII(52 micron) fine structure lines with the proposed Space Infrared Telescope for Cosmology and Astrophysics. We find that the cross power spectrum can be measured beyond a redshift of z=8. Such observations could constrain the evolution of the metallicity, bias, and duty cycle of faint galaxies at high redshifts and may also be sensitive to the reionization history through its effect on the minimum mass of galaxies. As another example, we consider the cross power spectrum of CO line emission measured with a large ground based telescope like CCAT and 21-cm radiation originating from hydrogen in galaxies after reionization with an interferometer similar in scale to MWA, but optimized for post-reionization redshifts.Comment: 21 pages, 6 figures; Replaced with version accepted by JCAP; Added an example of cross correlating CO line emission and 21cm line emission from galaxies after reionizatio

    THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways; these are subject to a variety of systematic effects associated with very long baseline interferometry and are supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations. Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which defines a set of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the design and currently existing components of Themis, how Themis has been validated thus far, and present additional analyses made possible by Themis that illustrate its capabilities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that can efficiently exploit modern high-performance computing facilities. Themis has already been used extensively in the scientific analysis and interpretation of the first EHT observations of M87

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT

    Introduction and Historical Review

    Get PDF

    Demonstrating the Principles of Aperture Synthesis with Table- Top Laboratory Exercises

    Get PDF
    Many undergraduate radio astronomy courses are unable to give a detailed treatment of aperture synthesis due to time constraints and limited math backgrounds of students. We have taken a laboratory-based approach to teaching radio interferometry using a set of college-level, table-top exercises. These are performed with the Very Small Radio Telescope (VSRT), an interferometer developed at the Haystack Observatory using satellite TV electronics as detectors and compact fluorescent light bulbs as microwave signal sources. The hands-on experience provided by the VSRT in these labs allows students to gain a conceptual understanding of radio interferometry and aperture synthesis without the rigorous mathematical background traditionally required. The data are quickly and easily processed using a user-friendly data analysis Java package, VSRTI_Plotter.jar. This software can also be used in the absence of the equipment as an interactive computer activity to demonstrate an interferometer’s responses to assorted surface brightness distributions. The students also gain some familiarity with Fourier transforms and an appreciation for the Fourier relations in interferometry using another Java package, the Tool for Interactive Fourier Transforms (TIFT). We have successfully used these tools in multiple offerings of our radio astronomy course at Union Colleg
    corecore