7 research outputs found

    Dissipative atom optics with cold metastable helium atoms

    Get PDF

    Formation of a molecular Bose-Einstein condensate and an entangled atomic gas by Feshbach resonance

    Full text link
    Processes of association in an atomic Bose-Einstein condensate, and dissociation of the resulting molecular condensate, due to Feshbach resonance in a time-dependent magnetic field, are analyzed incorporating non-mean-field quantum corrections and inelastic collisions. Calculations for the Na atomic condensate demonstrate that there exist optimal conditions under which about 80% of the atomic population can be converted to a relatively long-lived molecular condensate (with lifetimes of 10 ms and more). Entangled atoms in two-mode squeezed states (with noise reduction of about 30 dB) may also be formed by molecular dissociation. A gas of atoms in squeezed or entangled states can have applications in quantum computing, communications, and measurements.Comment: LaTeX, 5 pages with 4 figures, uses REVTeX

    Quantum optics with metastable helium atoms

    No full text

    Quantum optics with metastable helium atoms

    No full text

    Quantum optics with metastable helium atoms

    No full text
    corecore