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Chapter 1

Introduction

1 Studying laser-atom interactions with an atomic beam
setup

The simplest system for studying laser-atom interactions [1] consists of a single
atom, initially residing in a carefully prepared quantum state, interacting with a
well-defined light field. In general both energy and momentum can be transferred
between the light field and the atom. Hence the influence of the light field on the
atom is reflected by the change in the atom’s internal (electronic) and external (mo-
tional) state. Many experimental techniques have been devised to observe these
changes. The systems under consideration can often be described by a relatively
simple Hamiltonian, allowing their dynamics to be accurately predicted by theory.
Thus, many textbook “Gedanken experiments” are now experimentally accessible.

Usually a large experimental effort is required to prepare the atom in the desired
initial quantum state. In particular, the multitude of laser cooling techniques [2],
devised and refined over the last two decades, have enabled the production of atomic
samples of unprecedented quality. Nowadays, laser cooled atomic beams [3], atomic
clouds produced in a magneto-optical trap (MOT) [4], atomic fountains [5], and Bose-
Einstein condensates (BEC) [6–9] are used to study laser-atom interactions.

Bose-Einstein condensation in a weakly interacting gas of rubidium atoms was
first observed in 1995 [6]. Since then, many groups around the world have pro-
duced phase-coherent atomic samples in rubidium, sodium [7], lithium [8], and
even hydrogen [9]. Recently, condensates have found their way into the field of
atom optics [10], where their excellent properties (ultra-low temperature, high den-
sity and well-defined quantum state) are used to perform high-resolution experi-
ments [11–15].

Laser-cooled atomic beams are often a good choice if the atoms need to have
a relatively large and well-defined initial velocity (> 50 ms−1) in the experiment.
Furthermore, beam experiments can be performed in such a way that the atoms
pass the light field one after the other. This is quite different from BEC experiments,
where typically thousands or even millions of atoms are present in the light field
at the same time. Especially in quantum optics experiments that use small high-Q
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2D-detector

Cold atomic
beam

Light field

Figure 1.1: Schematic view of the setup used in the experiments described in this
thesis. Atoms in the cold atomic beam are deflected by the light field, which is
observed on a two-dimensional position-sensitive single-atom detector.

cavities, the simultaneous presence of more than one atom in the cavity alters the
dynamics of the system considerably [16].

An atom that absorbs a photon from a light field can re-emit it by either sponta-
neous or stimulated emission. In spontaneous emission, the atom emits the photon
in a random direction leading to a randomly directed recoil kick. Even the internal
state of the atom after spontaneous decay can be a random variable. The process of
absorption followed by spontaneous emission makes laser cooling possible, since it
allows for dissipation of atomic kinetic energy. The corresponding force, known
as the spontaneous radiation force, can therefore be used to cool atoms. Light
fields that contain intensity gradients can also transfer net momentum to the atom
through absorption/stimulated emission cycles. The corresponding force, known as
the dipole force, does not contain a random component and can be used to coher-
ently manipulate the motion of the atom. The dipole force is extensively used in the
domain of atom optics.

In this thesis we will use an ultra-high precision metastable helium beam as a
source of atoms, each of them carefully prepared in a well-defined electronic and
motional quantum state. The transverse momentum distribution of the atoms in the
beam is sub-recoil collimated, i.e., well below the momentum of a single 1083 nm
photon. The beam is used to study the influence of both the dipole force and the
spontaneous radiation force in detail. Specifically, we look at the angular distribution
of spontaneous recoils (which mirror dipole radiation patterns) and at large-angle
Bragg scattering of atoms from a standing light wave. For this purpose, we have
placed a two-dimensional position-sensitive single-atom detector in the far-field that
measures the change in transverse atomic momentum with sub-recoil precision. A
schematic view of the setup, used in the experiments presented in this thesis, is
shown in Fig. 1.1.

The atomic beam setup is constructed with a number of specific experiments in
cavity Quantum Electrodynamics and atom optics in mind, including photon num-
ber measurements in optical cavities and atomic wavepacket tomography. These
planned experiments will be briefly introduced at the end of this chapter.
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Figure 1.2: Part of the level scheme of helium. In this thesis we will exclusively use
the {1s2s}3S1 → {1s2p}3P2 transition at the optical wavelength λ = 1083 nm.

2 Atomic beam setup

Observing atomic diffraction with a detector placed in the far-field requires the use
of a light atom, such that a relatively large deflection angle can be obtained for a
single photon recoil. Furthermore, one should be able to laser cool the atoms in
order to prepare a high-quality atomic beam. Also, the atoms have to be detected
with high efficiency and sub-recoil precision. Metastable helium in the {1s2s}3S1
state seems to be an excellent choice in this respect [17,18].

Figure 1.2 shows part of the level scheme of helium. The {1s2s}3S1 state can
be populated by exciting ground state atoms ({1s2}1S0) by electron impact. The
metastable {1s2s}3S1 state (in this thesis often denoted by He∗) has a lifetime in
excess of two hours, which is caused by strict selection rules preventing the radiative
decay back to the {1s2}1S0 ground state [19]. Laser cooling can be done on the
{1s2s}3S1 → {1s2p}3P2 transition at the optical wavelength λ = 1083 nm. It is a
closed transition with a 98.8 ns radiative lifetime of the {1s2p}3P2 state. Absorption
of a single 1083 nm photon by a metastable helium atom results in a velocity change
vR = �k/M = 0.092 ms−1 (also known as the recoil velocity), with k the wavenumber
of the light and M the mass of the atom.

Knops [17, 18] showed that the photon number experiment and the wavepacket
tomography experiment require a He∗ beam that satisfies rather stringent condi-
tions with respect to the longitudinal velocity distribution P(v‖), the perpendicular
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velocity distribution P(v⊥), and the beam diameter dbeam. First of all, the beam has
to be slow, v‖ < 400 ms−1, to make sure that the acquired transverse momentum
leads to a relatively large deflection angle. It also has to be highly monochromatic,

σv‖/v‖ =
√
〈v2
‖ 〉/v‖ < 2 × 10−2, to ensure both well-defined deflection angles and

a well-defined interaction time with the light field. Furthermore, it has to be ultra-

collimated in both transverse dimensions, σv⊥ =
√
〈v2⊥〉 < 0.1vR = 9× 10−3 ms−1, in

view of the fact that absorption or emission of a photon changes the atomic velocity
by the recoil velocity vR. The 2D-detector has to be placed at least 2 m behind the
light field to obtain the required degree of sub-recoil detection precision with a typ-
ical detector resolution of 100 µm. Finally, the atomic beam diameter dbeam should
not exceed 25 µm to ensure that it is narrower than the minimum diameter of the
light fields used in the experiments.

3 Contents of thesis

The first part of this thesis deals with the construction and characterization of an
ultra-high precision atomic beam setup. In the second part of this thesis, the beam
setup is used to perform atom optics experiments.

Chapter 2 describes the construction of the atomic beam setup. Several laser
cooling mechanisms are used to transform the ensemble of hot He∗ atoms leaving
the source into a slow, monochromatic and ultra-collimated atomic beam. The trans-
verse velocity distribution of the atoms in the beam is collimated to below one tenth
of the recoil velocity associated with a 1083 nm photon.

In the experiments described in this thesis, the ultra-high precision atomic beam
interacts with a well-defined light field. The momentum transfer between the light
field and the atoms causes the latter to be deflected. In chapter 3 we describe the
two-dimensional position-sensitive single-atom detector that is used to observe the
deflection with high precision. Here, we also use the 2D-detector to fully characterize
both the motional and the electronic state of the atoms in the beam.

An atom experiencing spontaneous emission will emit a photon in a random di-
rection. The angular distributions of dipole radiation are expected to be anisotropic.
Furthermore, they depend on the polarization of the emitted photon. Two distinct
distributions, associated with decay via either a π - or a σ -transition, can be iden-
tified. In chapter 4 we let the atoms in the beam interact with a weak running
wave, which causes some of the atoms to spontaneously emit a photon. The re-
coil associated with the emitted photon causes the atoms to be deflected. The cor-
responding deflection patterns are measured on the 2D-detector and immediately
reflect the angular distributions of spontaneous emission. A state-selective deflec-
tion technique, based on the Stern-Gerlach effect, is used to distinguish between π -
and σ -transitions.

In chapter 5 we let the atomic beam interact with an off-resonant standing light
wave. The cold atoms in the beam, which behave like plane atomic waves, are
diffracted by the periodic dipole potential. By tuning the experimental parameters
into the so-called Bragg regime, the motional state of each atom is prepared into a
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coherent superposition of only two momentum states. Thus, the standing light wave
acts as a coherent beam splitter for atoms: each “splitted” atomic wavepacket moves
along two spatially separated paths at the same time. The splitting ratio of the beam
splitter can be tuned with the intensity of the standing light wave. In this chapter
we produce a tunable coherent beam splitter for atoms with two well-defined out-
put ports and a maximum splitting angle of 5.9 mrad. This leads to a macroscopic
path separation of up to 12 mm on the 2D-detector. Atoms that undergo sponta-
neous emission during the Bragg scattering process can easily be identified on the
2D-detector due to the acquired random photon recoil. This allows for a selective
removal of these atoms from the measurement.

4 Future experiments

4.1 Photon number measurement in a high-finesse optical cavity

In the first planned experiment, diffraction of atoms from a light field stored in a
single mode of a high-finesse optical cavity will be used to provide a direct demon-
stration of the quantization of the electromagnetic field. Instead of storing informa-
tion on the photon statistics of the cavity field in the electronic state of the atom,
as reported by Brune et al. [20], this information can also be stored in the motional
state of the atom [21–24]. We plan to use our high-finesse optical cavity with a
measured reflective finesse of 6.5 × 105 for the fundamental TEM00 mode [17]. The
average photon number in the cavity is chosen to be well below unity. In this regime
the classical approximation, in which the light field has a well-defined amplitude,
breaks down and quantum effects become observable. The corresponding atomic
diffraction pattern observed on the 2D-detector should then provide a clear signa-
ture of field quantization. Even the average photon number can be extracted from
the diffraction pattern under the right experimental conditions. To make the re-
quired “snapshot” of the field, the atom has to traverse the light field in less than
the cavity damping time. This regime can not be addressed with atoms from a MOT
or a fountain [16], due to their relatively low velocity. The optimal longitudinal ve-
locity of the He∗ beam for this experiment is around 250 ms−1 [17].

Furthermore, a “single-atom laser” [25] can be build by exciting the atoms with
a classical light wave perpendicular to and overlapping with the cavity mode. The
excited atoms can transfer photons from the perpendicular light wave into the cavity
mode. Here, a single atom acts as a gain medium to produce a cavity field containing
several photons on average. The population of the cavity mode can be monitored by
measuring the light leaking out of the cavity. The single-atom laser is a true “inver-
sionless” laser since the incoherent excitation by the perpendicular light wave does
not lead to population inversion. The lasing is caused by a fundamental asymmetry
between the rate of absorption and stimulated emission, the latter being significantly
higher in the regime of low intra-cavity photon numbers.
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4.2 Quantum tomography of atomic motion

Another possible experiment, using a classical light field, constitutes the measure-
ment of the full density matrix associated with the center-of-mass motion of an
ensemble of one-dimensional atomic wavepackets. The density matrix can be recon-
structed by measuring a set of tomographic projections of the associated Wigner
function [26, 27]. The wavepackets are produced by sending the cold atomic beam
through a mechanical transmission grating. These wavepackets are then sent through
the nodes of an off-resonant standing light wave. The dipole potential, which is ap-
proximately harmonic near the nodes, rotates the Wigner function over an angle that
can be controlled with the intensity of the standing light wave. A set of tomographic
projections of the Wigner function over an angle-interval of π radians is sufficient
to reconstruct the Wigner function and thus the corresponding density matrix. With
free evolution of atomic wavepackets, instead of interaction with a light field, rota-
tion angles up to π/2 have been achieved [28]. With the same method full recon-
struction has been achieved of the wavefunction associated with an electromagnetic
field state [29] and the center-of-mass motion of a single trapped ion [30].
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Chapter 2

A collimated, slow and monochromatic
beam of metastable helium atoms

1 Introduction

The experiments described in this thesis can only be done if we use a He∗ beam
that satisfies a number of stringent criteria: the atomic beam has to be slow, v‖ <
400 ms−1, and highly monochromatic, σv‖/v‖ < 2 × 10−2, while at the same time
it has to be ultra-collimated in both transverse dimensions, σv⊥ < 0.1�k/M = 9 ×
10−3 ms−1, and narrow, dbeam = 25 µm. In other words, the beam has to be both
extremely cold and narrow. As we will see from this chapter, these requirements are
not easy to meet if one also requires a beam flux well above 1 s−1.

Standard design atomic sources for metastable noble gases produce rather hot
atomic beams that do not satisfy the criteria mentioned above. Fortunately, with the
advent of laser cooling, it has become possible to manipulate the motion of neutral
atoms in many ways. In particular, the techniques developed in the last two decades
have enabled the production of ever colder atomic samples. Temperatures of 3 nK
have been achieved in one dimension [1]. In combination with the more conventional
evaporative cooling technique [2], it has led to the observation of Bose-Einstein con-
densation (BEC) in weakly interacting atomic gases, where both low temperatures
and high atomic densities are required [3].

The idea to cool neutral atoms to very low temperatures using almost reso-
nant laser light was first proposed by Wineland and Dehmelt [4] and Hänsch and
Schawlow [5] in 1975. The first experimental results by Chu et al. [6] date back to
1985. Since then, the field has expanded rapidly with applications in many areas of
atomic physics, such as ultra-high resolution spectroscopy [7] and atom optics [8].

The techniques of laser manipulation can not only be used to cool atoms in either
one, two or three dimensions but it can also serve as a tool for producing optical
elements for neutral atoms [9]. Unlike in traditional optics, the dissipative nature of
laser cooling allows an increase in phase-space density of an atomic sample. In this
chapter we will use several optical elements to manipulate the motion of metastable
helium atoms, such that an atomic beam is created that satisfies all the criteria
mentioned above.

11
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2 Spontaneous radiation force

Consider a two-level atom interacting with a single resonant running laser wave. By
absorbing a photon from the laser, the atom obtains the photon’s momentum which
is directed along the laser beam. By emitting the photon, the atom obtains an addi-
tional recoil, equal in size but opposite to the momentum of the re-emitted photon.
Over many absorption/spontaneous emission cycles, the emission recoils average
out to zero, while the absorption momenta add up to an average force �F = ��kΓne.
This force is called the spontaneous radiation force, or radiation force in short. It is
proportional to the photon momentum ��k, with k = |�k| = 2π/λ the wavenumber of
the photon, and to the spontaneous emission rate Γne, with Γ the decay rate of the
excited state and ne the excited state population. Absorption of a photon from the
laser beam followed by stimulated emission into the same laser beam does not trans-
fer any net momentum to the atom, hence does not produce a force. For resonant
excitation the excited state population is given by ne = s/(2(s + 1)), with the on-
resonance saturation parameter s given by s = I/I0, in which I is the laser intensity.
The saturation intensity I0 depends on the atomic transition involved. The radiation
force saturates for I → ∞, giving a maximum force of �Fmax = ��kΓ/2. For metastable
helium atoms, excited on the {2s}3S1 → {2p}3P2 transition at λ = 1083 nm, the
radiation force yields a maximum acceleration of 4.7 × 105 ms−2. For off-resonant
excitation one has to take into account the Lorentzian-shaped profile of the transi-
tion. For a single running wave the radiation force then takes the form

�F = ��kΓs
2(1+ s + {2∆eff/Γ}2)

, (2.1)

in which ∆eff is the effective detuning from resonance.

2.1 Velocity-dependent radiation force

In a coordinate frame moving along with the atom, the effective detuning ∆eff is not
only determined by the laser detuning ∆L = ωL −ω0, with ωL the laser frequency
andω0 the frequency of the atomic transition, but also contains a contribution ∆D =
−�k · �v due to the Doppler effect. Thus, the radiation force depends on the atomic
velocity component along the direction of the laser. The velocity-dependence of the
radiation force forms the basis for the standard laser cooling mechanism known as
“Doppler cooling” or “optical molasses” [9].

Consider an atom interacting with a standing laser wave, produced by two coun-
terpropagating running laser waves of the same frequency and intensity. The laser
light is slightly red-detuned with respect to the atomic transition, thus ∆L < 0. An
atommoving slowly along one of the laser beams will see the other counterpropagat-
ing laser beam slightly blue-shifted by the Doppler effect, and consequently closer to
resonance. It will absorb more photons per unit of time from the counterpropagat-
ing laser than from the copropagating laser. Hence, it will experience a net force F
opposite to its own velocity v , i.e., a decelerating force. Around v = 0 the decelerat-
ing force is proportional to the velocity and can be regarded as a pure friction force,
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Figure 2.1: Velocity-dependence of the decelerating force in Doppler cooling on the
helium {2s}3S1 → {2p}3P2 transition. Here: ∆L = −Γ/2 and s = 2. The decelerating
force acts as a pure friction force between −vc and vc.

which dampens the atomic motion. For s � 1 the friction force can be approximated
by [10]

F = 8�k2s(∆L/Γ)v

(1+ {2∆L/Γ}2)
2 ≡ −βv, (2.2)

in which β (≥ 0) is the damping coefficient. Figure 2.1 shows the decelerating force
for optimal cooling (∆L = −Γ/2 and s = 2) as a function of the atomic velocity for
the transition in helium as mentioned above. Atoms with a velocity below the so-
called capture velocity vc = −∆L/k experience the pure friction force. Using three
orthogonal pairs of laser beams, the atoms are cooled in three dimensions [6]. Note
that such a three-dimensional optical molasses merely cools the atoms but lacks the
ability to trap them, since there is no position-dependent force that drives the atoms
back to a single equilibrium position in space. In this chapter we will collimate
an atomic beam, i.e., cool it in two dimensions by two orthogonal pairs of laser
beams [11].

2.2 Position-dependent radiation force

In a magnetic field, each atomic level is shifted by an amount ∆E = −�µ·�B = µBBgimi,
with �µ the magnetic moment of the atom, µB the Bohr magneton, B the magnetic
field, gi the Landé factor of level |i〉 and mi the magnetic quantum number with
respect to the quantization axis defined by the field. Thus, the effective detuning
∆eff will also contain a contribution ∆B = µBB(geme − ggmg)/�. In the case of
an inhomogeneous magnetic field �B(�r), the radiation force of Eq. 2.1 will become
position-dependent. Combining both velocity- and position-dependent forces allows
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for efficient cooling and trapping of atoms in a so-called “Magneto-Optical Trap”
(MOT) [12]. In this chapter we will use two-dimensional versions of the MOT to
efficiently focus [11] and compress [13] an atomic beam. The position-dependent
force can also be used to decelerate atoms from thermal velocities down to even
zero velocity [14]. We will use this so-called “Zeeman shift compensated slowing”
technique to produce a highly monochromatic atomic beam.

2.3 Cooling limits

The minimum temperature of an atomic sample achieved by pure Doppler cooling
is called the Doppler limit [6]. Its existence can be understood by the fact that the
Doppler cooling process inevitably incorporates a small heating mechanism. The
Doppler limit is reached when both the cooling and the heating mechanism are in
equilibrium. The heating process is caused by the fluctuations of the atomic momen-
tum due to the random direction of spontaneous emission and due to the random-
ness in the number of absorbed photons. The momentum transfer during cooling
resembles a random walk through momentum space with finite steps of ��k. Even
though the average momentum of an atomic sample can be become arbitrarily small,
the momentum spread and thus the temperature is limited to a finite value, the so-
called Doppler temperature TD.

The temperature of an atomic sample is usually defined for each motional degree
of freedom separately by kBTi/2 = M〈v2

i 〉/2, with i ∈ {x,y, z} and M the mass of
the atom. The Doppler temperature depends on the number of dimensions occupied
by cooling laser beams. For a one-dimensional (N = 1) model of optical molasses it
is derived that TD = �Γ/(2kB) [10]. For metastable helium atoms cooled on the
{2s}3S1 → {2p}3P2 transition this amounts to TD = 39 µK, with the corresponding
Doppler velocity vD =

√
〈v2〉 = 0.28 ms−1. In a higher dimensional (N ∈ {2,3})

model of optical molasses, the Doppler limit per dimension is essentially the same
provided 2Ns � 1: the minimum temperature hardly increases as long as the atoms
are not yet saturated by adding another pair of laser beams [10]. A low value of s,
however, results in a low cooling rate. Thus, in systems where the molasses can only
be applied during a short time, such as in an atomic beam setup, one often has to
use higher values of s to reach low temperatures.

A photon can be spontaneously emitted in each direction, resulting in a recoil
that is not only restricted to the dimensions occupied by the cooling laser beams.
This means that part of the momentum spread, that causes the heating, can be trans-
ferred to the non-cooled dimensions. For this reason, the real Doppler temperatures
are slightly lower for one- and two-dimensional cooling than derived above. Strictly
speaking, the Doppler temperature depends on the shape of the angular sponta-
neous emission radiation distributions. In chapter 4 we will see that these radiation
distributions do not have to be isotropic and depend on the polarization of the emit-
ted photons. This can cause anisotropic Doppler temperatures.

By exploiting the internal degrees of freedom of the atom in the light field com-
bined with a polarization gradient or a magnetic field, it is possible to cool below the
Doppler limit [15–18]. Again, a lower limit is encountered, which is caused by the
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Figure 2.2: The minimum configuration, with one laser cooling section, that can
produce the required ultra-collimated, slow and monochromatic beam of metastable
helium atoms.

finite recoil energy εR = �2k2/(2M) associated with the absorption or emission of a
single photon. The so-called recoil temperature is found to be TR = 2εR/kB. In the
case of metastable helium cooled on the {2s}3S1 → {2p}3P2 transition this amounts
to TR = 4 µK, with the associated recoil velocity vR = 0.092 ms−1.

Cooling below the recoil limit requires that the spontaneous emission process is
turned off for atoms that are already cold enough. This can either be solved by using
a dark state of which the population is made velocity-selective (VSCPT) [19], or by a
scheme based on Raman transitions within the Zeemanmultiplet [20]. In this chapter
we will only deal with Doppler cooling, although the use of a two-dimensional MOT
allows, in theory, for reaching sub-Doppler temperatures.

3 Overview of the atomic beam setup

In this section we will introduce the necessary elements of the setup, required to
produce a He∗ beam that satisfies all the criteria put forward in chapter 1. It will
become evident that a number of laser cooling sections are needed to obtain the re-
quired “bright” atomic beam. The performance of each laser cooling section can be
expressed in the phase-space brightness B, which is equal to the number of atoms
per second per unit of phase-space area (mm2mrad2). In particular, the center-line
phase-space brightness B0 is important, i.e., the brightness near the axis in the prop-
agation direction of the atoms. Knops [21,22] simulated the performance of each of
these laser cooling sections using a numerical Monte-Carlo approach. Based on these
results he made a design for a setup that should satisfy all the criteria. In the rest
of this section we will follow his approach while adding some modifications, where
a different implementation was chosen.

3.1 Minimum configuration

The minimum configuration that produces the required cold atomic beam is shown
in Fig. 2.2 and consists of a source, a Zeeman slower, and a pair of collimating aper-
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Figure 2.3: The final configuration, with four laser cooling sections, that is capable
of producing an atomic beam flux well above 1 s−1.

tures. The experiments, described in chapter 1, also require an interaction region
and a two-dimensional position-sensitive detector.

Knops [21,22] found that an ordinary liquid-nitrogen cooled supersonic discharge
source produces a He∗ beam with a velocity distribution centered around 1300 ms−1

with σv‖ = 210 ms−1, a center-line brightness B0 = 1.0 × 109 s−1 mm−2 mrad−2 and
a center-line intensity of 2 × 1014 s−1 sr−1. In order to produce a slow (here we take
v‖ = 250 ms−1) and sufficiently monochromatic (σv‖/v‖ < 2 × 10−2) beam of He∗,
one needs to add a Zeeman slower. A disadvantage of the slowing process is that
the beam divergence increases considerably, due to both diffusion in the transverse
velocity direction and reduction of the longitudinal velocity component. Thus, the
beam brightness is dramatically reduced by the Zeeman slower. Simulations show
that behind the Zeeman slower B0 = 6.8× 102 s−1 mm−2 mrad−2. Finally, the atomic
beam has to be collimated and narrowed such that σv⊥ < 0.1vR = 9 × 10−3 ms−1

and dbeam = 25 µm. This is done by using two apertures of 60 µm and 25 µm in
diameter, respectively, separated by 2 m. Such a mechanical collimator, however,
has a phase-space acceptance area A of merely 4.4 × 10−7 mm2mrad2. The final
atomic beam flux Ṅ can now be estimated, resulting in Ṅ = B0A = 3.0× 10−4 s−1 or
one atom per hour! Evidently, this minimum configuration has to be extended with
additional laser cooling sections to increase B0 significantly.

3.2 Final configuration

Figure 2.3 shows the setup that is going to be used in this thesis. It contains three
extra transverse laser cooling stages in order to bring the beam flux above 1 s−1.

Magneto-optical lens and compressor

First, two transverse laser cooling stages are added in order to compress the broad
atomic beam behind the Zeeman slower into a narrow one. For helium this is most
efficiently done by using a combination of a magneto-optical lens (MOL) [11] and
a magneto-optical compressor (MOC) [13]. The MOL and the MOC exploit both the
velocity- and the position-dependence of the radiation force. The MOC can com-
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press atoms within a small capture area into a narrow beam. The MOL effectively
increases this capture area by prefocusing the broad atomic beam into the MOC. For
this purpose, the MOC is placed near the focus of the MOL (the focal length is typ-
ically 0.6 m). The simulated signal gain is considerable: a factor of 6.3 × 104 can
be achieved. The beam behind the MOC has a diameter of 0.2 mm and a brightness
B0 = 4.3× 107 s−1 mm2mrad2, resulting in: Ṅ = 19 s−1.

Collimator

Furthermore, the brightness can be enhanced by adding a transverse cooling section
directly behind the source. It guides the atoms that leave the source within a cer-
tain angle with respect to the beam axis, the so-called capture angle, into a parallel
beam. For this purpose, a two-dimensional optical molasses with a curved wave-
front is used. With a saturation parameter s = 7.5, the maximum capture angle is
around 25 mrad. The phase-space brightness behind the Zeeman slower can then be
increased by a factor of 28. This brings the simulated beam flux up to 5.3× 102 s−1,
which would be sufficient for the experiments performed in this thesis. Thus, the
configuration of Fig. 2.3 gives a factor of 1.8 × 106 higher beam flux than the mini-
mum configuration of Fig. 2.2!

Doppler cooler

In the quantum tomography experiment, described in chapter 1, the effective beam
flux is 10 times lower due to the 10% open fraction of the free standing transmission
gratings. For this experiment the beam flux can be increased by an additional factor
of 80 by adding a short Doppler cooling section behind the MOC. Behind the MOC,
the divergence of the beam is of the order of 10 mrad rms. This translates into a
velocity spread of 2.5 ms−1 rms, which is far above the Doppler limit of 0.28 ms−1.
In the Doppler cooling section, this spread is reduced to the Doppler limit. We will
not implement this extra cooling section in this thesis.

4 Mechanical design

The cavity QED experiments that use an ultra-high finesse optical cavity, as described
in chapter 1, put extreme requirements on the level of mechanical vibrations allowed
in the setup. As many sources of vibrations as possible have to be eliminated in order
to keep the mirror separation stable to within 10−12 m.

First of all, we use turbomolecular vacuum pumps with a magnetically suspended
rotor, that produce roughly a factor of ten less vibrations than turbomolecular
pumps with conventional bearings. The flow of liquid nitrogen through the atomic
beam source and cooling water through the Zeeman magnets also introduces vi-
brations. The critical parts of the setup have to be isolated from these vibrations.
Therefore, the setup consists of two mechanically isolated parts mounted on sepa-
rate frames, connected only by bellows. An artist’s impression of the experimental
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Figure 2.5: Schematic view of the vacuum setup.
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setup is shown in Fig. 2.4. On the first frame the source, the collimator, the Zee-
man slower, and the magneto-optical lens are located. On the second frame the
magneto-optical compressor, the interaction chamber, and the detector are situated.
The second frame rests on airmounts for isolation from floor vibrations.

The supporting frames are made from PVC construction foam (brand name Klege-
cell), enclosed by aluminum plates. The foam/aluminum sandwich combines high
rigidity, which is necessary to retain the beam center-line stability, with low weight
and good vibration damping properties.

Thermal fluctuations in the environment (air drafts, local heat sources) can cause
the frames to distort. Under typical conditions, we have measured the bending angle
of one of the frames with respect to a laser beam mounted on one side during 24
hours. The drift of this angle stays within 10 µrad. For atoms traveling from the
interaction chamber to the detector this translates to a displacement of 20 µm,
which is well within the detector resolution. The aluminum top plates of the frame
serve double duty as optical table tops: they are equipped with a mounting hole grid
for optics mounts.

After the brightening process, the beam is collimated by two apertures. The po-
sition of these apertures has to be adjustable, while their suspension has to be very
rigid to minimize sensitivity for vibrations. We have developed such a suspension,
using flexure hinges, which allow for a displacement of 2 mm.

5 Vacuum system

Contamination of the vacuum by hydrocarbons could deposit on the mirror surfaces
and quickly decrease the finesse of the cavity in cavity QED experiments. The use of
turbomolecular pumps with magnetic bearings allows us to construct a completely
oil-free vacuum system, which is shown in Fig. 2.5. Each of the two “halves” of the
setup is pumped by three Edwards EXT250M turbo pumps, backed by “dry” scroll
pumps (Edwards ESDP12). To get rid of the residual gas load of the source, the
collimator chamber serves as a differential pumping stage. It is connected to the
source chamber by the skimmer hole (1 mm diameter) and to the Zeeman slower via
a tubular pump resistance (8 mm inner diameter and 100 mm length). In the second
part of the setup, an extra turbo pump is inserted between the turbo pumps and the
scroll pump in order to increase the compression ratio. This is necessary to obtain a
pressure on the level of 10−9 mbar in the interaction region and at the 2D-detector.

The vacuum system is controlled and safeguarded by a PLC system, interfaced
with a PC for operation of the setup and programming of the PLC. The PLC sys-
tem provides automatic startup and shutdown procedures and protects the vacuum
system against catastrophic operator errors.
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Figure 2.6: Diode laser setup that is frequency-stabilized by saturated absorption
spectroscopy. DL: diode laser, CL: collimating lens, OI: optical isolator, L1+L2: tele-
scope to focus the laser light through the optical isolator, λ/2: half wave plate,
BS: beam splitter, PBSC: polarizing beam splitter cube, λ/4: quarter wave plate, M:
mirror, PD: photo-detector.

6 Laser setup

All the lasers used for laser cooling are locked to the {2s}3S1 → {2p}3P2 transition
in helium (λ = 1083.034 nm, I0 = 1.67 W/m2 for the |1,+1〉 → |2,+2〉 two-level
transition and Γ = 1.022 × 107 s−1). We use DBR diode lasers (Spectra Diode Labs,
SDL-6702H1 [23]) with a free-running linewidth of 3 MHz [24] and a maximum output
power of 50 mW at a typical injection current of 180 mA. Three diode lasers are
used for collimation, slowing and compression of the atomic beam. The output light
from each diode is linearly polarized in the vertical y-dimension and collimated into
an elliptically shaped beam (2wx = 4.8 mm and 2wy = 1.4 mm) by an AR-coated
aspheric lens (Thorlabs C230TM-C, f = 4.5 mm, 0.55 NA). The injection current for
the diodes is supplied by home-made diode laser drivers. Each driver is equipped
with a controller capable of keeping the temperature of the diode stable to within
1 mK by using the NTC resistor and the Peltier element inside the laser. The drivers
can be controlled by computer, allowing digital fine tuning of the injection current
in steps of 0.5 µA. The drivers are also equipped with an analog voltage input for
fine tuning of the injection current with 83 µA/V. The diodes have a typical laser
frequency vs. current tunability of 1 MHz/µA.

6.1 Saturated absorption spectroscopy

The lasers for the collimator and the MOL/MOC-combination require only a small
detuning from resonance and are frequency locked using saturated absorption spec-
troscopy [25]. A schematic representation of such a frequency-stabilized diode laser
setup is shown in Fig. 2.6. Around 300 µW of the main laser beam is split off by a
beam splitter (BS). After passing a polarizing beam splitter cube (PBSC, Newport) the
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light is circularly polarized by a quarter wave plate (Eksma, low order quartz). The
σ+-light passes an RF (30 MHz) excited discharge in a gas cell, filled with 0.3 mbar
helium [26]. It is retro-reflected by a mirror and traces its way back through the gas
cell. After passing the quarter wave plate and the PBSC, it is focused onto an InGaAs
photo-detector (Hamamatsu G6854-01) equipped with additional pre-amplifier. The
σ+-σ+ configuration pumps the atoms into the |mg=+1〉 state, allowing excitation
of only the two-level transition. Due to the Doppler shift, both counterpropagating
beams saturate atoms with opposite velocity components along the common axis of
the laser beams for a given laser frequency. Around resonance both beams start to
address the same atoms (with zero velocity) causing a lower total absorption. The
Doppler-free part of the absorption profile shows a narrow peak with a FWHM width
of 10 MHz, while the Doppler-broadened part has a FWHM width of 2.0 GHz, corre-
sponding to the 400 K temperature in the gas discharge. The transition frequency of
the atoms in the gas cell can be changed by applying a magnetic field parallel to the
laser. The resulting Zeeman shift changes the level separation between the ground
and the excited state.

The Doppler-free absorption signal is turned into a dispersive error signal by
applying a small oscillating (1025 Hz) magnetic field over the discharge cell. The
modulation in the atomic transition frequency causes a modulated photo-detector
signal. Using a lock-in amplifier, the photo-detector signal is transformed into the
frequency derivative of the absorption profile. The laser is locked to the zero cross-
ing of the error signal. By applying an additional DC magnetic field over the gas
cell, the zero crossing can be frequency shifted, which enables us to detune the laser
from resonance by a maximum amount of ±200 MHz. When in lock, the laser has a
frequency stability of around 500 kHz.

6.2 Collimator and Zeeman slower

The diode lasers for the collimator and the Zeeman slower are protected from un-
wanted optical feedback by an optical isolator (collimator laser: ConOptics model
715, 40 dB isolation, 90% transmission; Zeeman laser: OFR IO-D-1083, 47 dB iso-
lation, 75% transmission). We use two lenses to focus the laser light through the
isolator, as shown in Fig. 2.6. Additional half wave plates (Eksma, low order quartz)
are used to rotate the linear polarization of the light back to vertical.

The collimator laser is frequency locked close to resonance by saturated ab-
sorption spectroscopy. The frequency of the Zeeman slower laser is stabilized in
a different way, since it requires a detuning larger than 200 MHz (in our case:
∆L/(2π) = −740 MHz). For this purpose, around 150 µW of both the collimator
and the Zeeman laser are optically heterodyned onto a fast InGaAs photo-detector
(Hamamatsu G6854-01, 2 GHz bandwidth by 5 V negative bias). The beat signal is
further amplified (Phillips Scientific model 6954, 1.5 GHz bandwidth and maximum
voltage gain of 100) and fed into a frequency counter (Voltcraft 7023, 1.5 GHz range).
The beat frequency is kept at a constant value by a digital feedback loop. In this loop
a computer reads the beat frequency via an RS232 port and corrects the frequency
of the Zeeman laser by means of the injection current. The counter is set to a gate
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Figure 2.7: Artist’s impression of a wire scanner (a) and a knife-edge scanner (b).

time of 100 ms giving a 1 kHz resolution. This allows us to eliminate the drift in the
Zeeman laser frequency.

6.3 MOL and MOC

The MOL and the MOC use the same laser, that is frequency locked close to resonance
(∆L = −2Γ ) by saturated absorption spectroscopy, as shown in Fig. 2.6. Again, an
optical isolator (ConOptics model 715) and an additional half wave plate (Eksma) are
used behind the laser. The laser power is distributed between the MOL and MOC by
a variable ratio beam splitter, sending approximately 35% to the MOL and 65% to the
MOC.

7 Beam diagnostics

To test the performance of the individual laser cooling sections we use either wire
scanners or “knife-edge” scanners. A metastable helium atom in the {2s}3S1 state
carries 20 eV of internal energy, enabling the Auger emission of an electron upon
impact on a metal surface (typical workfunction of 5 eV) with near unity efficiency.
Measuring the Auger current gives the number of metastables per second. The ef-
ficiency for impact on stainless steel is found to be nearly the same for metastable
helium atoms in the {2s}3S1 and {2s}1S0 state and ranges between 0.70 and 0.95 [27].
In the rest of this chapter we will assume an efficiency of 1, resulting in a lower limit
for all the measured beam fluxes.

An artist’s impression of a wire scanner is shown in Fig. 2.7(a). Two stainless steel
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Figure 2.8: The discharge-excited metastable atom source with liquid nitrogen cool-
ing. The discharge is drawn from the electrode through the nozzle to the grounded
skimmer.

detection wires of 0.1 mm diameter are mounted on a single, computer-controlled,
linear translator. The two wires are placed under right angles with respect to each
other, allowing the simultaneous measurement of the beam profile in two dimen-
sions. The use of two wires also allows us to measure the position of the atomic
beam with respect to the center-line of the setup. Thus, the proper functioning and
alignment of a two-dimensional laser cooling section can be confirmed with just a
single scan. A knife-edge scanner is depicted in Fig. 2.7(b). Knife-edge scanners are
mounted on the same type of linear translators and can be used to measure inte-
grated beam profiles. Placing them in the beam allows for a fast measurement of the
total beam flux.

8 Metastable atom source

The beam of metastable helium atoms is produced by a discharge excited supersonic
source. The helium atoms are partially excited (fraction ∼ 10−4) to the metastable
{2s}3S1 state by collisions with electrons in the DC discharge.

The source is cooled with liquid nitrogen to reduce the longitudinal velocity of
the atoms. This reduces the effective source temperature from 400 K down to 150-
200 K. An outline of the source is shown in Fig. 2.8. The source consists of two
coaxial tubes: through the inner tube the gas is supplied, while the outer tube is
filled with liquid nitrogen. The gas expands through a boron-nitride nozzle (0.1 mm
diameter) that is in contact with the flat side of the liquid nitrogen reservoir. Boron-
nitride is an electrical insulator with a good thermal conductance. The discharge
is drawn from the electrode inside the inner tube through the nozzle to a skimmer,
which is grounded. The electrode is at a constant negative voltage. The skimmer hole
(1 mm diameter) is placed 10 mm behind the nozzle. Typical operating conditions
of the source are a source pressure of 40 mbar and a 5 mA discharge current at a
voltage of 760 V.

We use two knife-edge scanners to measure the center-line intensity of the source.
They are placed, respectively, 350 mm and 400 mm behind the nozzle. Both knife-
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Figure 2.9: Axial velocity distribution of the metastable atoms produced by the
source in the TOF-setup.

edge scanners are mounted orthogonally with respect to each other, which allows
us to move the knife-edges through the atomic beam in two orthogonal transverse
directions. The first knife-edge, at 350 mm, is put at a constant positive voltage
of 500 V to draw away the electrons emitted from the second knife-edge scanner,
hence preventing space charge buildup. By moving both scanners independently
and measuring the Auger current on the second scanner, the center-line intensity of
the source is found to be 4 × 1014 s−1 sr−1. This value contains an unknown contri-
bution from both helium atoms in the metastable {2s}1S0 state and XUV-photons.
Contributions of 3% and 10% have been reported previously [24,28]. The knife-edge
scanners were permanently removed from the setup after the measurement.

The atomic velocity distribution has been measured using a time-of-flight (TOF)
technique [29]. This method involves a mechanical chopper and a metastable atom
detector. The detector consists of a stainless steel plate and an electron-multiplier
and is situated downstream of the chopper wheel at a distance of 2.5 m. A mul-
tichannel analyzer accumulates the data. For the TOF-measurement, the source is
placed in a separate vacuum setup, since the chopper wheel and the metastable atom
detector can not be easily fitted into the final vacuum setup.

In the TOF-setup the source operates only in a stable way if we use slightly dif-
ferent operating conditions. Using a source pressure of 60 mbar and a 10 mA dis-
charge current at a voltage of 800 V, the measured velocity distribution is centered
at v‖ = 1300 ms−1 with σv‖ = 210 ms−1. This distribution is shown in Fig. 2.9.
Using the enthalpy balance, we can calculate the reservoir temperature T0 of the
gas just before it expands through the nozzle: T0 = 190 K. The increase with re-
spect to the liquid nitrogen temperature is caused by heating of the gas by the dis-
charge. Under these operating conditions the center-line intensity is found to be
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2× 1014 s−1 sr−1 [21,22].
In the final setup we use a discharge current of only 5 mA, which is half the value

used in the TOF-setup. Rooijakkers [28] used a similar source for metastable helium
atoms and found that reducing the the current from 10 to 5 mA reduces both the
most probable longitudinal velocity and the velocity spread by 10% (in his case from
v‖ = 1250 ms−1 down to v‖ = 1130 ms−1). Applying this result to our setup gives a
velocity distribution centered at v‖ = 1175 ms−1 with σv‖ = 190 ms−1 under normal
operating conditions.

9 Two-dimensional collimation of the atomic beam

The atoms that leave the source and pass the skimmer form a beam with a maximum
divergence angle of 50 mrad. The divergence angle is defined as the angle between
the atomic beam axis and the velocity vector of the atom. Under these conditions,
the atomic beam diameter will increase by 100 mm for each meter of flight, resulting
in a severe decrease of the center-line beam brightness. By placing a two-dimensional
Doppler cooling section directly behind the skimmer, the transverse velocity spread
(and thus the beam divergence) can be drastically reduced. It produces a collimated
beam of atoms and is therefore called the collimator.

Apart from the Zeeman slower, all the laser cooling sections in this chapter op-
erate in two dimensions. For simplicity, we will always describe their theory of
operation in just a single dimension. The generalization to two dimensions can not
be done in a straightforward way. Usually, the one-dimensional version works bet-
ter in one dimension than the two-dimensional version does in either of the two
dimensions. This is directly related to the fact that the atom has to “divide its time”
between the two cooling laser pairs.

9.1 Theory of operation

Ideally, the collimated atomic beam contains a large number of atoms and has a
low divergence. The beam flux is proportional to the square of the capture angle
θc = vc/v‖ = −∆L/kv‖. The decrease in beam divergence is determined by the
damping coefficient β, as described in Eq. 2.2. Although a large laser detuning results
in a high beam flux, it also causes a relatively high beam divergence, due to the low
value of β. Alternatively, choosing ∆L = −Γ/2 results in the best collimation at the
expense of a high beam flux.

This problem can be solved by using the so-called “curved wavefront” technique
[30,31], which is schematically depicted in Fig. 2.10. At the beginning of the cooling
section, the propagation vector �k of the light field is under a small angle α. Due
to the curvature of the wavefront the angle α is gradually reduced until it reaches
zero at the end of the cooling section. This effectively produces a spatially chirped
laser detuning, that ranges from ∆L − kv‖α at the beginning of the light field to ∆L

at the end of the light field. Thus, at the beginning of the light field, the atoms
with velocity v⊥ = −∆L/k+ v‖α experience the maximum decelerating force, as can
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Source Mirror Atomic
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α

Figure 2.10: Collimation with a curved wavefront technique. The initial “chirp” angle
α is not drawn to scale.

Figure 2.11: Collimator mirror section. Three mirrors are used to recycle a single
laser beam such that it illuminates the atomic beam from four sides. The arrows
indicate the orientation of the linear polarization of the light.
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be seen from Eq. 2.1. This sweeps the atoms to a lower transverse velocity, where
they pile up with the atoms originally occupying this lower velocity class. The spatial
chirp keeps the atoms at resonance, such that all the atoms within the initial capture
angle (θc = −∆L/kv‖ +α) finally end up at v⊥ = −∆L/k. Ideally, with ∆L = −Γ/2, the
atoms feel both counterpropagating laser beams at the end of the cooling section,
resulting in a beam divergence that is limited by the Doppler velocity vD.

The atoms can only “lock” to the chirped resonance velocity if the initial angle α
is limited to

α ≤ αmax = �kΓL
2Mv2

‖
, (2.3)

where L is the length over which the atoms interact with the light field. For L =
165 mm and v‖ = 1175 ms−1 we find αmax = 56 mrad. Numerical simulations of
such a one-dimensional collimator for He∗ reveal that values up to α = 25 mrad
provide good locking [21, 22]. Due to the stronger radiation force and lower beam
velocity, capture angles up to 100 mrad have been realized for Ne∗ [11].

9.2 Mirror section

The collimator laser beam is recycled by three mirrors (see Fig. 2.11), providing two
orthogonal pairs of counterpropagating beams from one input beam in order to
minimize the required laser power. The mirrors are gold coated (98% reflectivity for
λ = 1083 nm) and can be illuminated over a maximum length L = 165 mm, given by
the size of the AR-coated input window (165×15 mm2). The dimensions of the laser
beam right outside the vacuum are: 2wz = 192 mm and 2wy = 6 mm, with the z-
dimension along the atomic beam axis. For expanding the beam to this z-dimension
we use two cylindrical lenses. As a high-quality wavefront is not necessary, we use a
machined and subsequently polished plexiglass lens for the largest cylindrical lens.
In the y-dimension we use an anamorphic prism pair (Melles-Griot) to expand the
beam.

The laser light is linearly polarized orthogonal to the atomic beam axis, as indi-
cated by the arrows in Fig. 2.11. With 21 mW of laser power in the vacuum we can
achieve an average saturation parameter 〈s〉 = 〈I〉/I0,π = 7, with I0,π = 2.78 W/m2

for linearly polarized light.

9.3 Diagnostics

The performance of the collimator is measured using two wire scanners, both of
the type as shown in Fig. 2.7(a). The wire scanners constitute a permanent diagnos-
tic tool and are positioned, respectively, 1.90 m and 3.85 m behind the end of the
collimator. This far away from the source, particles that are not captured by the
collimator give a negligible contribution to the Auger current. The wire scanners
are used to fine-tune the alignment of the light fields in the mirror section, giving
optimum collimation.

Figure 2.12(a) shows the measured beam profiles for α = 12 mrad and ∆L = −2Γ .
Due to the 3 MHz spectral linewidth of the laser, this is the minimum achievable de-
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Figure 2.12: One-dimensional beam profile of the collimated atomic beam for α =
12 mrad and ∆L = −2Γ (a) and α = 0 mrad and ∆L = −3Γ (b). The profiles are
measured with a wire scanner positioned 1.90 m (solid line) and 3.85 m (dotted line)
behind the end of the collimator.

tuning. A smaller detuning results in the presence of blue-detuned light, heating the
atomic beam as confirmed by the experiment. Figure 2.12(b) shows the measured
beam profiles for α = 0 mrad and ∆ = −3Γ , which was found to be the optimum
detuning for a flat wavefront. The properties of the collimated beam are shown in
Table I. Although the curved wavefront technique can capture more atoms, the re-
sulting divergence is 2.4 times larger than in the case of the flat wavefront technique.
With v‖ = 1175 ms−1 we obtain 2.9 times the Doppler velocity for the flat wavefront
and 7.0 times the Doppler velocity for the curved wavefront.

The two-dimensional molasses with a relative large value of 〈s〉 probably pre-
vents us from reaching the 1D Doppler limit. The high atomic beam divergence in
the curved wavefront case is probably caused by the large detuning, imposed by the
spectral linewidth of the laser: the relative low decelerating force prevents the atoms
with a high transverse velocity from properly locking to the chirped resonance veloc-

Table I: Properties of the collimated atomic beam with a curved wavefront (α =
12 mrad) and without a curved wavefront (α = 0 mrad). All numbers represent
measured values except α and ∆L.

α ∆L Ṅ1.90m Ṅ3.85m T = Ṅ3.85m
Ṅ1.90m

θc σv⊥/v‖
(mrad) (Γ ) (1011 s−1) (1011 s−1) (mrad) (mrad)
12 -2 2.6 1.5 0.58 13 1.7
0 -3 1.2 1.2 0.96 9 0.70
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ity. With a narrow-band Nd:LMA laser and a curved wavefront Rooijakkers et al. [31]
obtained a capture angle of 14 mrad, while reaching 2.5 times the Doppler velocity.

In the fully operational beam setup, the flat wavefront technique gives a slightly
higher count rate on the 2D-detector than the curved wavefront technique. Evi-
dently, the Zeeman slower and the compressor benefit more from the lower beam
divergence than they suffer from the lower beam flux. Thus, we will use the flat
wavefront technique for the collimator in the rest of this thesis.

10 Zeeman slower

The atoms, leaving the collimator at thermal velocities, must be decelerated in a con-
trolled way in order to make a slow (v‖ < 400 ms−1) and monochromatic (σv‖/v‖ <
2×10−2) atomic beam. In all the experiments in this thesis we will use v‖ = 250 ms−1.

When decelerating atoms with resonant laser light one faces the problem that
the changing Doppler shift ∆D shifts the atom out of resonance after a few absorp-
tion/spontaneous emission cycles. Two main techniques have been devised to keep
the atoms in resonance during the whole slowing process. In the first one, the laser
frequency ∆L is chirped in time to match the changing resonance velocity [32]. A
disadvantage of this technique is that it generally produces a time structure in the
atomic beam. The second technique keeps the atoms in resonance by using a spa-
tial compensation of the atomic transition frequency via the Zeeman effect [14]. It
employs a magnetic field that changes along the deceleration path. This technique
produces a continuous beam of slow atoms and will be used in this chapter.

10.1 Theory of operation

The Zeeman slower uses the resonant radiation force to slow down the atoms by a
counterpropagating laser beam. The distance ∆z required to slow down atoms from
an initial longitudinal velocity v‖,i to a final velocity v‖,f with a constant deceleration
can be calculated to be

∆z = M(v2
‖,i − v2

‖,f)
�kΓη

, (2.4)

in which 0 ≤ η ≤ 1 is the fraction of the maximum radiation force used in the
slowing process. Slowing He∗ atoms from 1300 ms−1 down to 250 ms−1 using the
maximum achievable deceleration (η = 1) on the {2s}3S1 → {2p}3P2 transition gives
∆z = 1.7 m.

In the Zeeman slower circularly polarized σ+-light is used. The atoms are thus
pumped to the |mg =+1〉 ↔ |me =+2〉 sublevel system. In order to stay resonant
during the whole slowing process they have to fulfill the resonance condition ∆B =
∆L +∆D for each position z, giving

kv‖(z) = −∆L + µB� B(z), (2.5)

where ∆B = µBB(z)/� is the Zeeman shift due to the magnetic field B(z). In order
to achieve a constant deceleration, the magnitude of the magnetic field B(z) has to
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Figure 2.13: Schematic representation of the slowing process in a “mid-field zero”
Zeeman magnet. A metastable helium atom with an initial velocity v‖,i enters the
slower in region I and is optically pumped to the |mg =+1〉 state. In region II, the
atom follows the resonance velocity v‖ dictated by the magnetic field until it reaches
the final velocity v‖,f. Here, the resonance velocity swiftly increases and the atom is
no longer decelerated.

follow

B(z) = B0 + B1
√
1− z

z0
, (2.6)

where B0 is the offset magnetic field and B1 is the magnetic field range, which deter-
mines the maximum initial atomic velocity that is captured: v‖,c = µBB1/(�k). The
offset field B0 is related to the laser detuning ∆L via: µBB0/� = ∆L. Here, z0 is the
position where the atomic velocity reaches zero if the deceleration would continue.

The slowing process can be understood from Fig. 2.13. Consider an atom entering
the slower with velocity v‖,i < v‖,c (dotted line). The solid line represents the velocity
v‖ that is resonant with the laser at position z, as given by Eq. 2.5. In region I the
atom briefly becomes resonant with the rising edge of the magnetic field. This short
interaction pumps the atom to the |mg=+1〉 state. Some distance later the atom is
resonant again, but will now follow the resonance velocity dictated by the magnetic
field. If the gradient of the magnetic field is not too large, the atom is continuously
decelerated and is able to follow the decreasing resonance velocity (region II). At the
end of region II the magnetic field gradient swiftly changes sign. This way, the atoms
will lose resonance very abruptly, which gives a well-defined final velocity v‖,f.

In a practical setup, the values of B1 and z0 (in Eq. 2.6) are chosen such that atoms
can follow the decreasing resonance velocity with a deceleration that is smaller than
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Table II: Characteristics of the Zeeman slower.

solenoid 1 solenoid 2
length 1.6 m 1.0 m
max. number of layers 20 32
wire thickness 2.0 mm 2.0 mm
inner diameter 100 mm 100 mm
outer diameter 180 mm 228 mm
max. field strength/current 1.06× 10−2 T/A −1.53× 10−2 T/A
current 3.0 A −2.35 A
maximum B 3.18× 10−2 T −3.59× 10−2 T
∆L/(2π) −740 MHz −740 MHz
capture velocity 1300 ms−1

final velocity 250 ms−1

the maximum achievable deceleration. This provides a safety margin that compen-
sates for statistical fluctuations in the decelerating force, the finite laser intensity,
and imperfections in the wavefront of the laser beam [33].

10.2 Implementation

In our setup, we create the required magnetic field using two solenoids, producing
fields in opposite directions. In between the solenoids, the magnetic field is equal
to zero. This “mid-field zero” configuration allows us to decelerate the atoms over a
large velocity range using only moderate electrical currents. It also avoids that a sub-
stantial amount of atoms are lost at a level crossing between the {2p}3P2 |me=+2〉
state and the {2p}3P1 |me = 0〉 state at B = 5.50 × 10−2 T, as reported by Rooi-
jakkers [28].

The dimensions of the solenoids and other characteristics are included in Table
II. For the capture velocity and the final velocity we choose 1300 ms−1 and 250 ms−1,
respectively. The length of both solenoids is chosen such that the atoms can follow
the magnetic field with a fraction 2/3 of the maximum radiation pressure induced
deceleration. This requires that ∆z = 2.6 m. The solenoids are water cooled and
dissipate around 450 W in total. The Zeeman slower produces stray magnetic fields
in the collimator and in the MOL. These fields are canceled by extra compensating
solenoids mounted at the front and at the end of the Zeeman slower. The fields
of the compensating magnets lower the maximum axial magnetic fields in the two
Zeeman solenoids by less than 5 Gauss. By shunting the appropriate solenoids with
a resistor, the whole Zeeman slower, including compensating solenoids, can be op-
erated from a single power supply.

The Zeeman laser is detuned by ∆L/(2π) = −740 MHz. Around 18 mW of σ+-
polarized laser light is coupled into the Zeeman slower through a mirror with a
1 mm diameter orifice in the center. This mirror is positioned directly behind the
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MOL/MOC-combination, which compresses the atomic beam and funnels it through
the orifice. Using an anamorphic prism pair and a telescope of spherical lenses the
laser beam is given the following dimensions: 2wz = 2wy = 50 mm, resulting in
an average saturation parameter of 〈s〉 = 〈I〉/I0,σ = 4, with I0,σ = 1.67 W/m2 for
circular polarized light. The vacuum entrance window clips the beam to 35 mm
diameter. By adjusting the telescope, the laser beam is focused onto the skimmer to
match the atomic beam divergence.

10.3 Absorption diagnostics

Several techniques can be used to measure the velocity distribution P(v‖) of the
atoms that leave the Zeeman slower. Normal time-of-flight techniques, which require
a mechanical chopper behind the Zeeman slower, can not be used since the chopper
wheel and the metastable atom detector will inevitably block the Zeeman laser. Rooi-
jakkers [28] places the chopper wheel at the entrance of the Zeeman slower and uses
a “transparent” detector. Since the velocity of the atoms is altered after passing the
chopper wheel, the resulting TOF-signals are hard to interpret. Mastwijk [24] uses a
laser to deflect atoms from the slow beam into a channeltron positioned 0.9 m down-
stream, 5 mm off-axis. Simulations [21] show that, in our case, the atomic beam will
have an rms width of 18 mm at the end of the Zeeman slower. This makes proper
use of the deflection technique in our setup virtually impossible.

More promising is the technique in which a probe laser traverses the atomic beam
under an angle. By scanning the laser in frequency and detecting the correspond-
ing fluorescence, the velocity distribution can be obtained. The low detection ef-
ficiency of photomultipliers at 1083 nm prevents us from measuring the fluores-
cence directly. Instead, we will measure the absorption of the probe laser, which
is equivalent to the total amount of fluorescence emitted by the atoms. Since the
relative absorption is only in the order of 10−3, considerably lower than the relative
power variations of the probe laser in time, we use a frequency modulation (FM)
technique [34].

Figure 2.14 shows the mirror section that guides the probe laser beam through
the setup. The probe laser traverses the atomic beam four times: twice under normal
incidence and twice under 45◦. This mirror section temporarily replaces the mirror
section of the MOL. The ideal geometry, in which the probe laser traverses the atomic
beam only twice, could not be implemented in our setup due to limitations in the
position and size of the entrance window.

Atoms will absorb light from the probe laser if ∆L = �k · �v . Thus, the two probe
laser beams under 45◦ measure P(v45◦), with v45◦ = (v‖ + v⊥)/

√
2. The two probe

laser beams under normal incidence measure P(v⊥). Since P(v⊥) is centered around
v⊥ = 0, atoms with a low transverse velocity will always absorb from both normal
incidence beams at the same time. The sign difference in the Doppler shift prevents
atoms from absorbing from both 45◦ beams at the same time. If both P(v45◦) and
P(v⊥) are Gaussian distributions and if v‖ and v⊥ are independent random variables,
then one can easily calculate P(v‖). The distribution P(v‖) will also be Gaussian with
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Figure 2.14: Mirror section that guides the probe laser beam through the setup. A
beam splitter (BS) splits off the probe laser beam of dimensions d × d. The probe
light traverses the atomic beam four times: twice under normal incidence and twice
under 45◦. Then, it leaves the vacuum and is focused onto a photo-detector (PD).

〈v‖〉 =
√
2〈v45◦〉. The rms velocity spread σv‖ can be calculated to be:

σv‖ =
√
2(σv45◦)2 − (σv⊥)2. (2.7)

The relative absorption AiR(∆L) from a single, weak (s � 1) probe laser beam i
(i ∈ {45◦,⊥}) can be calculated to be

AiR(∆L) = Ṅ�ω0Γεi
2I0d〈v‖〉

∫
dviP(vi)C(kivi −∆L), (2.8)

with Ṅ the atomic flux that passes the probe beam of dimensions d × d, �ω0 the
photon energy, I0 the saturation intensity and εi a constant (ε45◦ =

√
2 and ε⊥ = 1).

The function C(kivi − ∆L) is the convolution between the Lorentzian shape of the
atomic transition and the (known) frequency spectrum of the laser S(ω). Here, we
assume that the probe beam dimension d is smaller than the width of the atomic
beam.

The probe laser is frequency modulated with a modulation depth ∆̃L and modula-
tion frequency fmod, giving an instantaneous detuning ∆L = 〈∆L〉 + ∆̃L cos(2πfmodt).
With the use of a lock-in amplifier we can measure the amplitude of the relative ab-
sorption signal ÃR =

∑
i ÃiR. For a small modulation depth we effectively measure

the derivative of AR(∆L) =
∑
i AiR(∆L) with respect to ∆L:

ÃR

∆̃L

≈ ∂AR(∆L)
∂∆L

. (2.9)

Integration with respect to ∆L immediately gives AR(∆L). This can then be fitted with
the use of Eq. 2.8 to determine Ṅ, P(v45◦) and P(v⊥).
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Figure 2.15: Relative absorption profile around resonance when the collimator is
turned on and the Zeeman slower is turned off: thermal atoms absorb light from the
two perpendicular probe beams. Solid circles: measured data points, solid line: fit
using Eq. 2.8.

We use the laser for the MOL/MOC as the probe laser. The probe beam is linearly
polarized (I0 = I0,π = 2.78 W/m2). We choose s = 0.033 and d = 20 mm. The
laser is modulated with a frequency fmod = 1025 Hz and an amplitude ∆̃L/(2π) =
1.2 MHz. The probe beam is focused on an InGaAs photo-detector (Hamamatsu
G6854-01), equipped with a two-stage pre-amplifier. The detector has both a DC-
and an AC-coupled output. The DC-coupled signal is proportional to the total probe
laser power. The AC-coupled signal is proportional to the FM-part of the absorption
signal and is fed into the lock-in amplifier. The DC-coupled signal and the output
of the lock-in amplifier are fed into the computer that also controls the frequency
scanning of the probe laser. The computer program uses Eq. 2.9 and a numerical
integration routine to calculate AR(∆L).

First, we determine Ṅ and P(v⊥) of the collimated, thermal atomic beam. Figure
2.15 shows the relative absorption profile around resonance when the collimator is
turned on and the Zeeman slower is turned off. The double peak structure is caused
by an 8 mrad angle between the two perpendicular probe beams. This allows us to
measure the absorption from both probe beams separately. Fitting the data with
Eq. 2.8 gives: Ṅthermal = 3.6×1011 s−1 and σv⊥ = 1.6 ms−1. These values are a factor
2 to 3 higher than the ones found with the wire scanners. The limited SNR obtained
with this FM absorption technique does not allow for determining the broad forward
velocity distribution of the thermal beam.

By turning on the Zeeman slower, the atoms are slowed down and the atomic
beam divergence increases. Figure 2.16 shows the relative absorption profiles when
both the collimator and the Zeeman slower are turned on. Now, both the absorption
from the perpendicular and the 45◦ probe beams can be measured. Data analysis
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Figure 2.16: Relative absorption profile from the two perpendicular probe beams (a)
and one 45◦ probe beam (b) when both the collimator and the Zeeman slower are
turned on. Now, slow atoms absorb probe light. Solid circles: measured data points,
solid line: fit using Eq. 2.8.

gives: Ṅslow = 8 × 1010 s−1, σv⊥ = 6.0 ms−1, σv‖ = 4.8 ms−1 and v‖ = 245 ms−1.
Due to the finite size of the Zeeman slower laser at the end of the second solenoid,
the slow atomic beam can not exceed a diameter of 30 mm. We estimate that the
20 mm probe laser beam addresses 70% of the slow atoms. Thus, the Zeeman slower
produces approximately 1.1 × 1011 He∗ s−1 at v‖ = 245 ms−1, with σv‖/v‖ = 1.9 ×
10−2.

In chapter 3 we will use a completely different approach to measure the forward
velocity distribution of the slow atomic beam. That method is more accurate than
the FM absorption technique, but needs a fully operating beam machine. It gives:
v‖ = 247 ms−1 and σv‖/v‖ = 1.5× 10−2.

11 Two-stage atomic beam compression

The Zeeman slower produces a rather broad (30 mm diameter) and divergent (25
mrad rms) atomic beam, resulting in a low beam brightness. The beam brightness
can be increased significantly by funneling the atoms into a narrow and collimated
beam. This is done with a two-stage beam compression technique. Each stage con-
sists of a two-dimensional MOT, operating in its own regime. The first stage, formed
by the MOL, captures the broad atomic beam and focuses the atoms into the capture
area of the second stage, the MOC. Here, the atoms are funneled into a narrow and
collimated atomic beam. The combined system of MOL and MOC is called the com-
pressor. Figure 2.17 shows an overview of the atomic trajectories in the compressor.
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Figure 2.17: Atomic trajectories in the compressor, that consists of a magneto-
optical lens (MOL) and a magneto-optical compressor (MOC).
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Figure 2.18: Trapping scheme of a 2D-MOT. The two-dimensional quadrupole field
is created by the four permanent magnets. The light field consists of two orthogonal
σ+-σ− laser pairs.
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11.1 Theory of operation

A 2D-MOT is schematically depicted in Fig. 2.18. In each trapping dimension a mo-
lasses is formed by two counterpropagating σ+- and σ−-polarized laser beams. The
position-dependence of the radiation force is produced by a magnetic quadrupole
field, which creates a constant magnetic field gradient near the beam axis. At the
position of the beam axis the magnetic field is exactly zero.

The essential properties of the 2D-MOT are most easily explained for an atom
excited on a J = 0 → J = 1 transition. In our case (J = 1 → J = 2) additional
optical pumping processes take place, that redistribute the atoms over the available
magnetic sublevels. The principle of operation, however, stays the same.

For a single trapping dimension x and a J = 0 → J = 1 transition, the net
radiation force equals [13]

F(x,vx) = F+(x,vx)+ F−(x,vx), (2.10)

in which F±(x,vx) is the force exerted by the σ± laser beam with

F±(x,vx) = ± �kΓs
2
(
1+ s + {2∆±/Γ}2

) , (2.11)

∆± = ∆L ∓ kvx ∓ µB�
∂B
∂x

x, (2.12)

where the effective detuning ∆± contains the laser detuning ∆L, the Doppler shift due
to the transverse velocity vx, and the Zeeman shift due to the local magnetic field
B(x) = (∂B/∂x)x. The sign difference in the Zeeman shift is caused by the fact that
the σ+-beam excites the mg = 0 → me = +1 magnetic subtransition, while the σ−-
beam excites themg = 0 →me = −1 transition. For each position x there exists an
equilibrium velocity vx,eq = −(µB/�k)(∂B/∂x)x towards the beam axis, for which the
two forces are balanced. For ∆L < 0 and s � 1 the cooling force can be approximated
by F = −β(vx−vx,eq), which is very similar to Eq. 2.2. Again, this equation only holds
for velocities below the capture velocity: |vx−vx,eq| < vc = −∆L/k. Thus, the motion
of the atoms is locally “cooled” to the equilibrium velocity vx,eq.

MOL

The MOL uses a small magnetic field gradient ∂B/∂x to produce a thin lens for
atoms. The lens effect is caused by the fact that the equilibrium transverse velocity
vx,eq is proportional to the distance from the beam axis. The lens is thin, since the
atoms hardly change their transverse position during interaction with the light field.
The focal distance f of the MOL can be calculated from the expression for vx,eq and
is found to be

f = xv‖
vx,eq

= �kv‖
µB
(
∂B
∂x

) , (2.13)

with v‖ the forward velocity of the atoms. In order to properly “lock” the atoms
to vx,eq, the magnetic field gradient ∂B/∂x is slowly increased from zero, at the
beginning of the MOL, to a maximum value at the end of the MOL, which determines
the focal length f .
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MOC

In the MOC, the magnetic field gradient increases at a much higher rate along the

beam axis z, i.e.:
(
∂2BMOC
∂x∂z

)
�

(
∂2BMOL
∂x∂z

)
. Only atoms relatively close to the beam axis

can properly lock to the swiftly changing vx,eq. These atoms are dragged inward and
reach the beam axis before the end of the MOC. When they arrive at the beam axis
both x = 0 and vx,eq = 0. Thus, all the captured atoms pile up at the beam axis with
a low transverse velocity. The final velocity spread and the size of the atomic beam
produced by the MOC is determined by the velocity- and position-gradient of the
force near the axis. A small laser detuning produces a cold atomic beam but results
in a small capture velocity vc. A high magnetic field gradient produces a narrow
beam but results in a small spatial capture radius xc at the entrance, as can be seen
from Fig. 2.19. This problem is solved by prefocusing the atoms, using the MOL,
into the relative small spatial capture range of the MOC. This approach combines
the large spatial capture range of the MOL with the strong compression capabilities
of the MOC.

11.2 Implementation

Mirror sections

The two-dimensional σ+-σ− configuration of the light fields, as required by a 2D-
MOT, is produced by recycling a single σ+-polarized laser beam in a special mir-
ror section, as depicted in Fig. 2.20. Each mirror is coated with a HR polarization-
maintaining coating for 1083 nm. The mirror section for the MOL is illuminated
over a length of 100 mm (2wz = 120 mm, 2wy = 23 mm and 〈s〉 = 〈I〉/I0,σ = 2),
while the light field of the MOC extends over a length of 120 mm (2wz = 120 mm,
2wy = 23 mm and 〈s〉 = 〈I〉/I0,σ = 4). The MOL/MOC laser detuning is set to the
minimum achievable value of ∆L = −2Γ (see section 9.3).

Magnetic fields

The magnetic quadrupole fields are created by four permanent magnets. The con-
figuration of the magnets is shown in Fig. 2.18 and leaves enough space for the light
fields. For the MOL, we use barium ferrite magnets (40× 35× 10 mm3, 0.4 T magne-
tization). The magnets for the MOC are made of a Nd-Fe-B alloy (70× 60× 30 mm3,
1.15 T magnetization). Figure 2.21 shows the measured on-axis field gradient along
the light field for the MOL and the MOC. Up to 15 mm off-axis the field gradients are
found to be perfectly constant. The MOL ends with a field gradient of 0.030 T/m,
giving a focal length f = 0.54 m. The MOC, that starts 0.55 m behind the exit of the
MOL, ends with a field gradient of 0.80 T/m.
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Figure 2.19: Position-dependence of the trapping force on an atom for vx = 0 and
different magnetic field gradients.
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Figure 2.20: Mirror section that produces the two orthogonal σ+-σ− laser pairs,
required for the MOL and the MOC, from a single circular polarized laser beam. The
shaded square indicates the cooling area.



40 Chapter 2

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

 d
B

/d
x 

(T
/m

)

z (mm)

 

0 20 40 60 80 100
0.00

0.01

0.02

0.03

 

dB
/d

x 
(T

/m
)

z (mm)

(a) (b)

Figure 2.21: Measured on-axis magnetic field gradient in the MOL (a) and in the MOC
(b). The light field extends over 100 mm in the MOL and 120 mm in the MOC.
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Figure 2.22: One-dimensional beam profile of the atomic beam after being focused
by the MOL (solid line) and with the MOL turned off (dotted line). The profile is
measured with a wire scanner positioned 0.50 m behind the end of the MOL, i.e.,
near the entrance of the MOC.
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11.3 Diagnostics

Numerical simulations [21,22] reveal that the spatial capture radius of the MOL ex-
ceeds 15 mm. Thus, the MOL should be able to capture all the slow atoms that leave
the Zeeman slower. For the MOC, the simulations show that a 6 mm diameter beam
can be compressed into a 0.2 mm diameter beam. These simulations were done for
∆L = −3Γ , resulting in a relative hot atomic beam that leaves the MOC. In the experi-
ment we achieve the highest count rate on the 2D-detector with ∆L = −2Γ . Evidently,
the smaller capture velocity vc is more than compensated for by the lower beam
divergence.

The performance of the MOL is measured with a wire scanner positioned 0.50 m
behind the end of the MOL, i.e., near the entrance of the MOC. Figure 2.22 shows the
measured beam profiles when the MOL is turned on or off. From the measurement
we estimate that the MOL focuses 2× 1010 He∗ s−1 into the 6 mm capture diameter
of the MOC. The total flux addressed by the MOL is 9× 1010 s−1.

The performance of the MOL/MOC-combination is measured using two orthogo-
nal knife edge scanners that are positioned behind the 1 mm orifice in the mirror of
the Zeeman slower, i.e., 10 cm behind the end of the MOC. Both knife edge scanners
contain an additional 60 µm wide slit. By moving both slits into the beam a mov-
able 60 × 60 µm2 aperture can be defined. In the actual experiments this aperture
together with a second movable aperture (25 µm diameter), placed 2 m downstream,
is used to obtain the sub-recoil collimated atomic beam.

The total flux Ṅ of the compressed beam can be measured with the first knife
edge scanner. We find: Ṅ = 5.0× 109 s−1. Thus, approximately 4% of the atoms that
leave the collimator reach the end of the compressor. By measuring the fraction of
atoms that pass the first 60 µm slit and impinge on the second knife edge scanner
we can determine the size of the beam ∆xMOC behind the MOC. This fraction is found
to be 20%, giving: ∆xMOC = 0.28 mm FWHM.

Table III: Atomic beam flux through the 1 mm orifice in the Zeeman mirror and on
the 2D-detector for several combinations of operating beam sections. S: source, C:
collimator and Z: Zeeman slower.

Operating section Ṅ through 1 mm orifice Ṅ on 2D-detector
(He∗ s−1) (He∗ s−1)

S 2× 107 ∗) < 1 ∗)

S+C 7.5× 108 ∗) 2.0× 102 ∗)

S+C+MOC 1.5× 109 ∗) < 1 ∗)

S+C+MOL+MOC 7.5× 108 ∗) < 1 ∗)

S+C+Z 9× 107 ∗∗) 1.0× 102 ∗)

S+C+Z+MOC 2.0× 108 0.1× 102

S+C+Z+MOL+MOC 5.0× 109 2.5× 102

∗) thermal atoms.
∗∗) we estimate: 2×107 s−1 slow and 7×107 s−1 thermal atoms.
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Turning off the MOL decreases the flux of the compressed beam by a factor 25,
resulting in: Ṅ = 2.0× 108 s−1. Thus, the MOL increases the effective capture radius
of the MOC by a factor

√
25 = 5.

Table III shows the beam flux that passes the 1 mm orifice in the Zeeman mirror
for several combinations of laser cooling sections. It also shows the observed count
rates on the 2D-detector, i.e., the number of atoms per second that pass the two final
collimating apertures. Note that the MOL/MOC-combination is aligned in such a way
that only slow atoms can reach the 2D-detector, while thermal atoms are blocked by
the collimating apertures.

The decrease in beam flux after passing the collimating apertures allows us to
determine σv⊥. For the collimated thermal beam we find: σv⊥ = 0.76 ms−1 (=
2.7vD), which is close to the 0.83 ms−1 found with the two wire scanners. For the
compressed slow beam we find: σv⊥ = 1.10 ms−1 (= 3.9vD). The observed flux of
slow atoms behind the collimating apertures, Ṅ = 250 s−1, is a factor of 2 below the
simulated value of section 3.2.

12 Concluding remarks

We have produced a narrow (dbeam = 25 µm), ultra-collimated (σv⊥ < 0.1vR = 9 ×
10−3 ms−1), slow (v‖ = 247 ms−1) and monochromatic (σv‖/v‖ = 1.5 × 10−2) beam
of metastable helium atoms in the {2s}3S1 state. With a flux of 250 He∗ s−1 the
beam can be used in any experiment (e.g. atom optics or quantum optics) where a
high-resolution study of the transverse momentum change of individual atoms is
required.

In chapter 3 we will see that, with proper magnetic guiding and aligning tech-
niques, the high-quality atomic beam is automatically spin-polarized in either the
|mg = −1〉 or |mg = 0〉 magnetic substate. This extra feature, basically “free of
charge”, can be used to produce an effective two-level atom, when interacting with
1083 nm radiation. Thus, with the beam setup, we not only completely control the
external (motional) state of the atom but also the internal (electronic) state.
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Chapter 3

Measuring atomic beam properties with
a 2D-detector

1 Introduction

In chapter 2 we produced a narrow, ultra-collimated, slow and monochromatic beam
of metastable helium atoms in the {2s}3S1 state. There, we used a two-dimensional
position-sensitive detector solely to measure the atomic beam flux. We can, however,
use the position information of the 2D-detector to further characterize and improve
the quality of the atomic beam. Dipole forces in a light field or even the pull of
gravity changes the motional state of an atom in a subtle way, which can be easily
observed on the detector. Not only the external (motional) state of the atoms can
be analyzed, but also the internal (electronic) state can be studied. An inhomoge-
neous magnetic field can be used to project the magnetic substate, in which an atom
resides, onto the motional state.

2 Two-dimensional detection of the atomic beam

For the experiments described in this thesis we need a two-dimensional position-
sensitive single-atom detector with a high detection efficiency for metastable atoms,
and preferably zero detection efficiency for ground state atoms. The spatial resolu-
tion of the detector, translated into transverse momentum, should not exceed the
transverse momentum spread of the atomic beam. In our setup the 2D-detector is
placed 2.05 m behind the interaction region, as shown in Fig. 3.1.

2.1 MCP-detector

Figure 3.2 shows a schematic view of the position-sensitive detector. It consists of
a Z-stack of microchannel plates (MCP) together with a resistive anode. A voltage
of 3.2 kV is applied across the Z-stack. Each microchannel, 15 µm in diameter, acts
as a small electron-multiplier. The channels are positioned under an angle of 15◦

45
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Apertures Interaction
region

2D-detector

2.00 m 2.05 m

Figure 3.1: Last part of the atomic beam setup. The two apertures (60 µm and 25 µm
in diameter) perform the final transverse beam collimation. Then, the atoms interact
with a light field in the interaction region, after which they travel to the 2D-detector.

Atom

MCP's

Anode

Electrons

3.2 kV

10 MΩ 20 MΩ10 MΩ

Figure 3.2: Schematic view of the position-sensitive detector, including MCP’s and
resistive anode.
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Figure 3.3: Front view of the resistive anode. The branching of the charge cloud
towards the four corners is measured. This allows one to derive the position of
impact of the atom in two dimensions.

to increase detection efficiency and spatial resolution. A metastable helium atom,
impinging on the front surface of the detector, releases an electron from the surface
with an efficiency close to unity.

The Z-stack provides an average gain of 4× 106. The electron cloud produced by
the Z-stack strikes the resistive anode. The electric charge pulse flows through the
uniform resistive layer of the anode. It is divided and collected by four electrodes
connected to the corners, as shown in Fig. 3.3. From the amount of charge that flows
to each of the four electrodes the position of the electron cloud can be calculated:

x = L
2
(Q01 +Q11)− (Q00 +Q10)
Q00 +Q01 +Q10 +Q11

, (3.1)

y = L
2
(Q00 +Q01)− (Q10 +Q11)
Q00 +Q01 +Q10 +Q11

, (3.2)

whereQij denote the collected charges and L denotes a length parameter, which was
measured to be L = 34.4 mm [1]. The pincushion shape of the anode is necessary
to obtain the linear relations in Eqs. 3.1 and 3.2. The MCP’s used in the Z-stack
have a viable area of 25 mm in diameter (equal to 33vR of transverse velocity at
v‖ = 247 ms−1).

2.2 Electronics

In order to measure the charges Qij , we use the electronics setup schematically
shown in Fig. 3.4. The electric currents at the four corners are amplified in four
home-made DC-coupled charge-sensitive amplifiers. Next, the signals are amplified
by four spectroscopic shaping amplifiers (EG&G Ortec 855). The amplified signals
are processed by four home-made peak detectors that retain the peak height for a
few microseconds and produce a trigger signal. An additional discriminator mea-
sures the sum of the four peak heights and produces a fifth trigger signal if the sum
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Figure 3.4: Overview of the electronics used to measure the charge pulse at the four
corners of the resistive anode. P: charge-sensitive pre-amplifier, S: spectroscopic
amplifier, PK: peak height detector. The results of the four AD conversions are
stored in the memory of the interface, together with the content of the counters T1
and T2. Additional trigger and the logical circuitry are not shown.

exceeds a preset minimum value. A logical device checks whether all five trigger
signals are present and, if so, sends a final trigger to the computer interface. There
an AD conversion is performed on the four output signals from the peak detectors.
We use two interfaces, which are synchronized, to perform in total four AD conver-
sions simultaneously. Each interface consists of two synchronized 12-bit ADCs, an
8-bit counter, and a 2 MB memory. In the memory, the results of subsequent AD
conversions together with the value of the counter are stored. The counter can be
used to perform time-resolved measurements. The dedicated computer interfaces
are designed and built by the Technical Laboratory Automation group of the Physics
Department. The detector electronics can handle a maximum of 30× 103 events per
second.

2.3 Resolution

The inset in Fig. 3.5(a) shows the density image, measured on the 2D-detector, of the
thermal atomic beam (only source and collimator operational). Figure 3.5(a) shows
the 1D Gaussian line profile through the middle of the peak, measured along the
horizontal x-dimension: the peak has a 67 µm rms width. We assume that the width
of the thermal beam on the 2D-detector is purely geometrically determined by the
two collimating apertures (60 µm and 25 µm in diameter, separated by 2 m). De-
convoluting the measured 1D-profile with the trapezium-shaped atomic beam pro-
file, imposed by the two collimating apertures, gives an rms detection resolution of
60 µm. For 247 ms−1 atoms this is equivalent to an rms velocity spread of 0.08vR.
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Figure 3.5: 1D line profile along the x-dimension through the peak on the 2D-
detector (solid circles) together with a Gaussian fit (solid line) for a thermal beam
(a) and a slow beam (b). The inset shows the corresponding detector image of area
2.5× 2.5 mm2.

The inset in Fig. 3.5(b) shows the density image, measured on the 2D-detector,
of the slow atomic beam (source, collimator, Zeeman slower, MOL, and MOC op-
erational). Figure 3.5(b) shows the 1D Gaussian line profile through the middle of
the peak, measured along the horizontal x-dimension: the peak has a 98 µm rms
width, which corresponds to an rms minimum feature size on the 2D-detector of
0.13vR. The increase in width is caused by an increase in beam divergence, which
is attributed to a small residual Stern-Gerlach effect [2] in the second collimating
aperture, made from copper. The effect is best observed with a slow atomic beam.
We will return to this effect in section 4.3. The minimum feature size on the 2D-
detector contains both the finite detection resolution and the transverse velocity
spread of the slow atomic beam. We find for the rms transverse velocity spread of
the slow atomic beam: σv⊥ = 0.10vR.

3 Longitudinal atomic velocity imaging

The atomic beam can be deflected by adding transverse momentum to it. The result-
ing displacement, observed on the 2D-detector, does not only depend on the atomic
transverse velocity but also on the longitudinal velocity. This allows one to map the
longitudinal velocity distribution of the atomic beam onto the 2D-detector.

3.1 Vertical mapping by gravity

All atoms in the atomic beam feel the pull of gravity, which causes them to be ac-
celerated downwards. It takes gravity 10 ms to accelerate an atom to the helium
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d1 d2

∆y

Figure 3.6: Parabolic trajectories, due to gravity, of a thermal and a slow atom to-
wards the 2D-detector. The slow atom hits the detector at a lower y-position than
the thermal atom.

∆y=0.61 mm

Figure 3.7: Superposition of the detector images of a thermal and a slow atomic
beam. Both beams are fully spatially separated on the 2D-detector. The slow atomic
beam clearly hits the 2D-detector at a lower y-position. The size of the detector
image is 2.5× 2.5 mm2.
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recoil velocity vR = 0.092 ms−1. In our setup, it takes a thermal atom around 3.5 ms
to travel from the first collimating aperture to the 2D-detector, while a slow atoms
needs 16 ms to accomplish this. Since both atoms have to pass the two narrow colli-
mating apertures, they will travel along different parabolic paths and impinge on the
2D-detector at different y-positions (see Fig. 3.6). Thus, gravity maps the velocity
distribution of the atomic beam onto the vertical dimension of the 2D-detector.

The separation on the 2D-detector between a thermal and a slow atom, ∆y , can
be calculated to be

∆y = g(d1 + d2)d2(v2
‖,t − v2

‖,s)
2v2
‖,tv

2
‖,s

, (3.3)

with d1 the distance between the two collimating apertures, d2 the distance between
the second collimating aperture and the 2D-detector, v‖,t the longitudinal velocity of
the thermal atom, v‖,s the longitudinal velocity of the slow atom and g the gravita-
tional acceleration.

Figure 3.7 is a superposition of the detector images of the thermal and the slow
beam (Fig. 3.5(a) and Fig. 3.5(b)). We find: ∆y = 0.61 mm. With d1 = 2.00 m,
d2 = 2.07 m, v‖,t = 1175 ms−1 and g = 9.81 ms−2, this corresponds to: v‖,s =
252 ms−1. Gravity does not transfer enough transverse momentum to the atomic
beam to accurately measure the longitudinal velocity spread.

3.2 Horizontal mapping by atomic Bragg scattering

In chapter 5 we will let the slow atomic beam interact with a standing light field in the
context of atomic Bragg scattering [3]. Within a few microseconds each atom obtains
2N�k of transverse momentum, where N is an integer. Here, we shall specifically
focus on 5th order Bragg scattering, where N = 5. The standing light field is oriented
along the horizontal x-dimension. Thus, the atoms will be scattered on the 2D-
detector from x0 = 0 to

x5 = v⊥d
v‖

= 10vRd
v‖

, (3.4)

with vR the helium recoil velocity and d = 2.05 m the distance between the standing
light field and the 2D-detector.

Figure 3.8 shows the 1D Gaussian line profile through the middle of the diffracted
peak, measured along the horizontal x-dimension: the peak is centered around x5 =
7.60 mm and has an rms width σx5 = 148 µm. Thus, deflection by a single photon
momentum �k corresponds to a 0.76 mm displacement on the 2D-detector. The
longitudinal velocity spread can be calculated to be

σv‖
v‖

=
√
(σx5)2 − (σx0)2

x5
, (3.5)

with σx0 the width of the undeflected beam. With σx0 = 98 µm, as shown in
Fig. 3.5(b), we find: v‖ = 247 ms−1 and σv‖/v‖ = 1.5× 10−2.
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Figure 3.8: 1D line profile along the x-dimension through the peak on the 2D-
detector (solid circles) together with a Gaussian fit (solid line) for a fifth order Bragg
diffracted slow atomic beam. The peak has broadened due to the longitudinal veloc-
ity spread of the beam.

4 Magnetic substate imaging by Stern-Gerlach type of
beam deflection

The interaction strength between a helium atom in the {2s}3S1 state and a resonant
light field, with a well-defined polarization, strongly depends on the ground state
magnetic quantum number mg (= −1,0 or +1) of the atom. Most of the experi-
ments, described in this thesis, require a well-defined interaction strength for each
individual atom that passes through the light field. Thus, it is important to know
how the atoms are distributed over the three magnetic substates when they enter
the light field.

4.1 Stern-Gerlach force

Using an inhomogeneous magnetic field we can spatially separate atoms with a dif-
ferent magnetic quantum number on the 2D-detector. Placing an atom with a mag-
netic dipole moment �µ in an external magnetic field �B will change its internal energy
by −�µ · �B. If the atom is moving and it experiences only slow variations in the
external field, then the projection of the atom’s magnetic dipole moment onto the
external magnetic field, mg, will remain constant. During this so-called adiabatic
motion [4] the internal magnetic energy of the atom acts as a position-dependent
potential. The resulting Stern-Gerlach force [2, 5] is proportional to the gradient of
the magnetic field and depends on the magnetic quantum numbermg:

�F = �∇(�µ · �B) = −µBggmg �∇|B|, (3.6)
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Figure 3.9: Substate dependent deflection by the Stern-Gerlach force of an unpolar-
ized beam (a) and a spin-polarized (mg = −1) beam (b) of metastable helium atoms.
The size of each detector image is 2× 10 mm2.

where µB is the Bohr magneton and gg (= 2 in our case) is the Landé factor.
To test this method we placed a barium ferrite magnet (40× 35× 10 mm3, 0.4 T

magnetization) outside the vacuum tube at a distance of 28 mm from the atomic
beam axis. The permanent magnet is positioned halfway between the interaction
region and the 2D-detector (see Fig. 3.1). With the slow atomic beam we obtain
the detector image of Fig. 3.9(a). Thus, just before entering the inhomogeneous
magnetic field, the atoms in the beam are approximately equally distributed over all
three magnetic substates.

Atoms withmg = 0 are not deflected by the permanent magnet. Placing the mag-
net halfway between the two final collimating apertures, results in a very low count
rate on the 2D-detector. Evidently, most of the atoms are deflected and are conse-
quently blocked by the second collimating aperture. Thus, very few mg = 0 atoms
are present halfway between the two collimating apertures. Further analysis shows
that the atomic beam is largely spin-polarized up to the second collimating aperture.
Evidently, the atoms pass a field free region at this point and get depolarized. By
adding a (homogeneous) magnetic guiding field of a few Gauss at this position, the
beam retains its spin-polarization. Figure 3.9(b) shows that with the extra guiding
field the atomic beam is spin-polarized in the “high-field seeking”mg = −1 substate.
The degree of polarization is found to be 92%, and the remaining 8% is polarized in
mg = 0. The beam flux is 250 He∗ s−1.

By slightly realigning the light field axis of the MOC, the magnetic quadrupole
field axis of the MOC, and the collimating apertures, we are able to produce an atomic
beam that is completely spin-polarized in the mg = 0 substate. The beam flux,
however, is only 50 He∗ s−1. No “low-field seeking”mg = +1 atoms were ever found
with this realigning technique. Thus, it seems that the MOC performs a magnetic
substate separation, by steering the mg = −1 atoms into a different direction than
themg = 0 atoms. With the two collimating apertures we can select a single species
while blocking the other and hence produce a spin-polarized atomic beam.
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4.2 Magnetic substate separation behind the MOC

The presence of separate spin-polarized beams of mg = −1 and mg = 0 atoms
behind the MOC can be understood by examining the forces that are exerted on
the atoms while traversing its light- and magnetic field. Optical pumping processes
make sure that nomg = +1 atoms leave the MOC.

In the MOC, where both a light field and an increasing magnetic field gradient are
present, the laser cooling force is by far dominant: the atoms are pulled towards the
quadrupole axis and compressed into a narrow beam. The magnetic field gradient
reaches its maximum at the position of the permanent magnets, as indicated in
Fig. 3.10. Whereas the light field ends abruptly, the magnetic field gradient can not
be turned off instantly. Thus, behind the MOC, the atoms will experience a gradually
decreasing Stern-Gerlach force.

Equation 3.6 shows that the Stern-Gerlach force depends on the magnetic sub-
state mg, which is defined with respect to the local magnetic field direction. The
optical pumping processes in the MOC polarize the atoms primarily in the “high-
field seeking” mg = −1 substate. This can be understood from Fig. 3.11. It shows
a schematic representation of the MOC, that includes both the laser beams and the
(on-axis) magnetic fields in the two transverse dimensions. An atom with a small
transverse velocity will primarily feel the position-dependence of the laser cooling
force, which drives the atom towards the magnetic quadrupole axis. This means that
the atom absorbs most photons per unit of time from the laser beam that pushes
the atom towards the quadrupole axis. The associated optical pumping processes
orients the magnetic dipole moment �µ along the component of the local magnetic
field in the corresponding dimension. Thus, most of the atoms will be polarized in
the “high-field seeking” substate, which is themg = −1 substate with respect to the
local magnetic field direction. Some atoms are left inmg = 0 and hardly any atoms
exit in the “low-field seeking”mg = +1 state.

Consider a helium atom that leaves the light field of the MOC at the transverse
position �r = (x,y) (the magnetic quadrupole axis is positioned at �r = �0) in magnetic
substate mg with respect to the local magnetic field vector �B(�r). The atom has no
initial transverse velocity. The magnetic quadrupole field, �B(�r) = [a(z)x,−a(z)y],
of the MOC will accelerate the atom to

�v⊥,SG = −
µBggmg

Mv‖
�r
|�r |

∫
|a(z)|dz, (3.7)

withM the atomic mass, v‖ the forward velocity of the atom and a(z) the transverse
magnetic field gradient at longitudinal position z. Thus, the motion of the mg = 0
atoms is undisturbed, while the mg = −1 atoms experience a radial Stern-Gerlach
force that points away from the magnetic quadrupole axis. Thus, in transverse ve-
locity space the mg = −1 atoms end up on a circle with radius v⊥,SG = |�v⊥,SG|.
From the measured magnetic field gradient profile of Fig. 3.10 we estimate that
v⊥,SG = 0.6 ms−1 for the mg = −1 atoms. Presumably, this effect contributes to the
measured rms transverse velocity spread of 1.10 ms−1 behind the MOC (see chapter
2).
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Figure 3.10: In the MOC, the laser cooling force is by far dominant and the influence
of the Stern-Gerlach force can be neglected. Behind the MOC, the light field disap-
pears while the magnetic field gradient remains. This will cause substate-dependent
Stern-Gerlach (SG) deflection of the atomic beam. The amount of deflection is pro-
portional to the area under the gradient curve in this region. PM: position of the
permanent magnets that create the quadrupole field.

B
+ -

-

+

y

x

Figure 3.11: The light fields in the “trap-configuration” of the MOC try to polarize the
metastable helium atoms in the “high-field seeking” mg = −1 substate.
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(a) (b)

Figure 3.12: Transverse heating of the slow atomic beam while passing the second
collimating aperture. For a copper aperture (a) the heating effect is relatively small,
while a stainless steel aperture (b) increases the beam divergence to above the recoil
limit. The size of each detector image is 3.5× 3.5 mm2.

Only atoms within a small area of transverse phase-space can pass the two colli-
mating apertures. The Stern-Gerlach effect sufficiently separates the mg = 0 atoms
from the mg = −1 atoms in phase-space, such that one can select only a single
species at the same time.

4.3 Stern-Gerlach dispersion introduced by a stainless steel aper-
ture

The second collimating aperture (25 µm diameter) is made from copper. Previously,
we used a stainless steel aperture (30 µm diameter). Figure 3.12 shows the 2D-
detector images of the slow atomic beam for both situations. The slow beam shows
significant anisotropic “heating” when passing the stainless steel aperture. Magnetic
substate analysis shows that both beams are spin-polarized in themg = −1 substate.
When using the stainless steel aperture, no additional guiding field is required to get
spin-polarization. We believe that a small residual magnetization of the stainless
steel causes large and irregular magnetic field gradients over the small area of the
aperture. The resulting strong Stern-Gerlach force deflects the mg = −1 atoms
in several directions, since it is highly position-dependent. Copper shows a much
smaller residual magnetization, resulting in a much smaller dispersion.

A thermal atomic beam and a slow beam of mg = 0 atoms produce peaks of
identical widths on the 2D-detector, independent of whether a stainless steel or a
copper aperture is used. Any Stern-Gerlach dispersion added to the thermal atomic
beam evidently stays well within the 2D-detector resolution.

Two orthogonal knife edge scanners, each equipped with a 60 µm wide slit, serve
as the first collimating aperture. Each scanners consists of a glass plate coated with a
conducting ITO-layer. The Stern-Gerlach dispersion introduced by these slits should
be negligible.

Schmiedmayer et al. [6] observe that a spin-polarized beam of sodium atoms is
significantly depolarized when passing a stainless steel slit (10 µm wide) at thermal
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velocities (1000 ms−1). The loss of polarization is attributed to nonadiabatic transi-
tions, also known as “Majorana flops”, due to the rapid transit of the atoms through
the collimating slit. Up to thermal velocities we observe adiabatic passage of the
metastable helium atoms through the stainless steel aperture. At low velocities,
however, the beam divergence is dramatically increased due to the Stern-Gerlach
dispersion.

5 Concluding remarks

With the aid of the 2D-detector we now have complete control over both the elec-
tronic and motional properties of the atomic beam. High quality (dbeam = 25 µm,
σv⊥ = 0.1vR = 9 × 10−3 ms−1, v‖ = 247 ms−1 and σv‖/v‖ = 1.5 × 10−2) beams of
eithermg = −1 (250 He∗ s−1) ormg = 0 (50 He∗ s−1) atoms can be obtained. In the
rest of this thesis, we will use the mg = −1 beam together with the 2D-detector to
study both the radiation- and the dipole force on atoms with sub-recoil precision.
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Chapter 4

Angular distributions of spontaneous
emission observed in atomic recoil

1 Introduction

The process of spontaneous emission plays an important role in most laser cooling
mechanisms. Atoms are cooled by many consecutive absorption/spontaneous emis-
sion cycles, during which the atomic kinetic energy is gradually reduced. Although
essential for laser cooling, the stochastic nature of spontaneous emission also intro-
duces lower bounds to the temperatures that can be reached in the atomic samples.
Well-known milestones are the Doppler temperature [1] and the recoil limit [2, 3].
Temperatures below the recoil limit can only be reached by turning off the sponta-
neous emission process for atoms that are already cold enough. This had led to the
development of techniques such as velocity-selective coherent population trapping
(VSCPT) [4] and stimulated Raman cooling [5].

Allowing spontaneous emission in systems with sub-recoil temperatures will not
only lead to heating, but will also change the motional state of the atoms in an
irreversible way. This can be particularly annoying in systems where the motional
state of the atoms is carefully being prepared by coherent laser-atom interactions.
The process of spontaneous emission can then be interpreted as a diffusion process
in momentum space. The gradual influence of such a diffusion process on atomic
diffraction was first studied by Gould et al. [6].

Few experiments deal with the influence of just a single spontaneously emitted
photon [7]. This regime was first studied experimentally by Pfau et al. [8]. They
diffracted and excited metastable helium atoms with a standing light wave. After
interaction, the excited atoms decayed by a single spontaneously emitted photon.
The resulting transverse momentum distribution was mapped on a one-dimensional
detector. This way they were able to measure the loss of spatial coherence of the
atomic de Broglie wave.

Using a Bose-Einstein condensate of sodium atoms, of which the momentum dis-
tribution could be displayed with an optical imaging technique, Kozuma et al. [9]
were able to map an angular radiation distribution, produced by spontaneous emis-
sion, into a two-dimensional atomic pattern. This was done in the context of atomic

59
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Figure 4.1: Polar representation of the radiation distribution functions FM1 (θ) for (a)
M=0 and (b) M=±1. The z-axis represents the quantization axis.

Bragg diffraction and no further effort was made to study these patterns in more
detail.

The combination of a spin-polarized (mg = −1) beam of metastable helium atoms
in the {2s}3S1 state, the Stern-Gerlach force that deflects atoms according to their
magnetic substate [10], and the use of a two-dimensional position-sensitive detector
allows a more detailed investigation of these patterns. The shape of the patterns
should depend on the polarization of the emitted photon. Two main types of emis-
sion patterns, associated with decay via either a π - or a σ -transition, can be identi-
fied. In this chapter we will show that both patterns can be independently measured.
By carefully orienting the quantization axis z of the atom, the symmetry properties
of the atomic patterns can be resolved.

2 Angular distributions of spontaneous emission

Consider an atom undergoing spontaneous decay from an excited state |Jeme〉 to a
ground state |Jgmg〉 with respect to the quantization axis z. In general, this is an
optical multipole (2J) transition, described by the order J and the change in mag-
netic quantum number M = me −mg. The angular radiation distribution function
FMJ for such a transition depends only on J and M : it is independent of whether
the transition produces magnetic or electric multipole radiation. For electric dipole
transitions (J = 1 and M = 0,±1), which have by far the highest decay rates, the two
possible normalized distribution functions in spherical coordinates are [11]

F01 (θ) = 3
8π

sin2 θ, (4.1)

F±11 (θ) = 3
16π

(
1+ cos2 θ

)
, (4.2)

in which θ is the angle between the quantization axis z and the wavevector �k of the
emitted photon. There is no dependence on the azimuthal angle ϕ.

A polar representation of the distribution functions is given in Fig. 4.1. In the
M = 0 case, the component of the angular momentum of the emitted photon along
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the quantization axis is zero. The atom does not change its magnetic quantum
number m: this is called a π -transition. If M = ±1, the component of the angular
momentum of the emitted photon along the quantization axis is ±�. Nowm changes
with ∓1: this is called a σ -transition.

The polarization of the emitted photon can only be measured with respect to the
wavevector �k, which is usually not oriented along the quantization axis z. Thus, the
polarization of the emitted radiation can, in general, be anything between linear and
circular, depending on the transition involved (M = 0,±1) and the orientation of the
wavevector �k with respect to the quantization axis z.

A simple classical interpretation can be used to understand the angular radiation
distributions for electric dipole transitions. In the case of a π -transition the atom
can be seen as a linear dipole oscillator that oscillates along the quantization axis.
Such an oscillator does not emit radiation in the direction of oscillation. Observing
the linear oscillator from the side (θ=π/2) reveals the full oscillation amplitude.
Hence, the linear oscillator emits most of its radiation in this direction. For each
angle of observation the emitted radiation is linearly polarized in the plane that
includes both the quantization axis and the wavevector.

An atom undergoing a σ -transition can be seen as a rotor, that rotates in the
plane perpendicular to the quantization axis. The rotor can be thought of as a su-
perposition of two orthogonal linear dipole oscillators, that oscillate with a phase
difference of π/2. When looking along the quantization axis both linear oscillators
reveal their full oscillation amplitude. Thus, the maximum amount of radiation is
emitted in this direction. Because of the π/2 phase difference this radiation is circu-
larly polarized. Observation under θ=π/2 reveals just a single linear oscillator, thus
giving a factor of two less radiation. This radiation is linearly polarized in the plane
perpendicular to the quantization axis. For all other angles θ the emitted radiation
is elliptically polarized.

3 Imaging techniques

3.1 Optical detection

Observing the radiation distributions FM1 (θ) can in principle be done using optical
techniques. For this purpose, one should prepare an atomic sample that emits radi-
ation from a fixed point in space. A photomultiplier is used to detect the radiation
that is emitted in a certain direction. A magnetic field and/or the technique of optical
pumping [12,13] can be used to orient the angular momentum and the quantization
axis of the atomic sample with respect to the photomultiplier.

Take, e.g., an atomic sample excited on a J = 0 → J = 1 transition. By using
either linearly or circularly polarized light, the atom will only decay via a π - or a
σ -transition, respectively. This allows one to measure the radiation distributions
F01 (θ) and F±11 (θ) separately, provided that the orientation of the quantization axis
with respect to the photomultiplier can be freely changed.

Most of the experiments done with optical detection techniques were concerned
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Figure 4.2: Profile on the 2D-detector of atoms undergoing a single absorp-
tion/spontaneous emission cycle.

with the properties of resonance fluorescence [14]. In early experiments [15–19] the
polarization properties of the resonance fluorescence from large atomic samples
were studied. Subsequent refining finally led to the observation of resonance fluo-
rescence (showing sub-Poissonian photon-statistics) from a single ion stored in a rf
trap [20]. All these experiments were done for a limited set of orientations of the
quantization axis with respect to the photomultiplier.

3.2 Principle of recoil imaging

Instead of detecting each emitted photon, one can also study its effect on the mo-
tional state of the atom. Consider atoms, that have a well-defined momentum �p,
interacting with a single running wave: absorption of a photon followed by sponta-
neous emission will change the atomic momentum �p into �p + ��k − ��kr, in which �k
is the wavevector of the running wave that excites the atom, and �kr is the wavevec-
tor of the spontaneously emitted photon. Although |�kr| = |�k|, the direction of the
spontaneously emitted photon can not be predicted but follows the angular radia-
tion distribution functions given in Eqs. 4.1 and 4.2. Hence, after a single absorp-
tion/spontaneous emission cycle the atoms will be oriented on a sphere in momen-
tum space. The center of the sphere is �p + ��k and the radius is �|�k|. In a running
wave no momentum can be transferred from the light field to the atom by absorp-
tion/stimulated emission cycles.

In a beam experiment, the running wave is placed orthogonal to the atomic beam
axis. The interaction can be made sufficiently weak, such that only a negligible frac-
tion of the atoms spontaneously emit a photon more than once. The two recoils,
obtained in the single absorption/spontaneous emission cycle, change the trans-
verse momentum �p⊥ of the atom. Before interaction: �p⊥ = �0. After the cycle:
�p⊥ = �(�k− �kr,⊥), in which �kr,⊥ is the transverse projection of �kr. The 2D-detector is
placed far behind the interaction region. With a short lifetime of the excited state
the atoms will decay almost instantaneously. Thus, the transverse momentum dis-
tribution of the atomic beam, right behind the interaction region, is mapped onto a
position distribution that is observed on the 2D-detector. Evidently, the atomic beam
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has to be monochromatic, narrow, and sub-recoil collimated for this to work. Since
|�kr,⊥| ≤ |�k| the atoms that undergo spontaneous emission will produce a disc on the

2D-detector. The radius of the disc in momentum space is �|�k|. This is depicted in
Fig. 4.2.

The angular radiation distributions of Eqs. 4.1 and 4.2 are defined with respect to
the quantization axis z. The exact distribution of the atoms over the disc in Fig. 4.2
will therefore depend on the orientation of the quantization axis with respect to the
atomic beam axis. One is free to choose the orientation of the quantization axis,
but two particular choices exploit the symmetry properties of Eqs. 4.1 and 4.2. By
choosing the orientation of the quantization axis z either parallel or perpendicular
to the atomic beam axis, each point on the disc corresponds to two points on the
sphere that have the same value of FM1 . The corresponding discs should then re-
flect the symmetry properties of Eqs. 4.1 and 4.2. In general, the orientation of the
quantization axis z is chosen by applying a weak magnetic field �B in the desired
direction.

The next problem one faces, is to separate atoms that decayed via M = 0 from
atoms that decayed via M = ±1. This is most easily done with an atomic beam,
that is initially spin-polarized, and a Stern-Gerlach type of magnetic substate sep-
aration [10]. By carefully choosing both the direction of the wavevector �k and the
polarization of the laser light, the atoms can be excited into a single excited state
|Jeme〉 with respect to the quantization axis z defined by the magnetic field �B. By
using Stern-Gerlach magnetic substate separation, as discussed in chapter 3, the dif-
ferent ground states |Jgmg〉 are directed towards different detector positions. In
general, this will produce 2Jg+1 discs on the detector. The selection rules for elec-
tric dipole transitions allow that at most three of these discs are populated. Each
disc will be a two-dimensional projection of Fme−mg

1 .

4 Experimental setup

In this experiment we use the atomic beam of metastable helium atoms in the
{2s}3S1 state, described in chapters 2 and 3: dbeam = 25 µm, σv⊥ = 0.1vR =
9 × 10−3 ms−1, v‖ = 247 ms−1 and σv‖/v‖ = 1.5 × 10−2. The beam contains 92%
of the atoms in |mg = −1〉 and 8% in |mg = 0〉. The beam flux is 250 s−1. The
rms minimum feature size on the 2D-detector was determined to be 0.13�k. The
experimental setup is schematically depicted in Fig. 4.3.

A small magnetic field �B of a few Gauss is used to orient the quantization axis
z either parallel or perpendicular to the atomic beam axis. Stern-Gerlach substate
deflection is achieved by positioning a barium ferrite magnet (40×35×10 mm3, 0.4 T
magnetization) outside the vacuum tube at a distance of 28 mm from the atomic
beam axis. The permanent magnet is positioned halfway between the interaction
region and the 2D-detector. On the 2D-detector, atoms with consecutive magnetic
quantum numbersmg are separated by an equivalent of 3.9 photon recoils.

The laser is tuned to the {2s}3S1 → {2p}3P2 transition with a detuning ∆L/(2π) =
−120 MHz and a power of 3 mW in the vacuum. The laser is chosen to be either lin-
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Figure 4.3: Schematic representation of the experimental setup. RW: running laser
wave (tuned to {2s}3S1 → {2p}3P2 transition, π - or σ+-polarized), �B: weak magnetic
field to orient the quantization axis z, SG: Stern-Gerlach state separating magnetic
field and DET: single-atom 2D-detector.
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Figure 4.4: Laser setup for the running wave. ECDL: extended-cavity diode laser,
L1-L4: spherical lenses, OI: optical isolator, λ/2: half wave plate, λ/4: quarter wave
plate, BS1-BS2: non-polarizing beam splitters, PBSC: polarizing beam splitter cube.
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early or circularly polarized, depending on the excitation scheme and the orientation
of the weak magnetic field �B.

The laser setup for the running wave is shown in Fig. 4.4. The light for the
running wave is provided by an extended-cavity diode laser (ECDL). The diode (SDL-
6702H1) can give 50 mW maximum output power and has a 3 MHz free running
linewidth. The output coupler of the extended cavity (10 cm length) is mounted on a
tubular piezo and reflects 24% back into the diode, narrowing its linewidth down to
300 kHz [21]. The transmitted light passes an optical isolator (OFR IO-D-1083, 47 dB
isolation, 75% transmission) and provides the output beam for the experiment. Part
of the output power is redirected towards a standard saturated absorption spec-
troscopy setup, used for frequency stabilization of the laser. The laser frequency
is stabilized by controlling the extended-cavity length via the piezo. Another part
of the output power is optically heterodyned with light from the MOL/MOC-laser
on a photodiode with integrated amplifier (200 MHz bandwidth). The resulting beat
signal is displayed on a spectrum analyzer and is used for visual inspection of the
laser detuning. The rest of the output beam is coupled into a single-mode polar-
ization maintaining fiber (Thorlabs, FS-PM5121) via a variable attenuator and a 25×
microscope objective (Melles-Griot, f = 7.2 mm). The variable attenuator consists
of a λ/2-plate (Eksma, quartz, low order) and a polarizing beam splitter cube (PBSC,
Newport). The fiber transports the beam from the optical table to the setup and
provides spatial filtering of the wavefront. The light at the output of the fiber is
recollimated with a 10× microscope objective (Melles-Griot, f = 16.9 mm) into a
circular beam with waist w0 = 1.35 mm. If linear light is needed, the beam passes
only a final PBSC and enters the interaction chamber. In the case of circular light, an
extra λ/4-plate (Eksma) is added.

5 Recoil imaging of spontaneous emission distributions

Because of the highly spin-polarized nature of the atomic beam, almost all atoms
will be deflected to the |mg = −1〉-spot in the absence of laser light. Even if the
laser is turned on, the majority of the atoms will reach the |mg = −1〉-spot, since
the probability for spontaneous decay is well below one. These atoms will produce
a high peak in the two-dimensional mapping of the detector signal. One would like
to measure the discs for M = 0 and M = ±1 in the absence of such a high peak. This
can in most cases be achieved by choosing such an excitation scheme that the atoms
of interest end up at the |mg = 0〉-spot. Still, a small peak of |mg = 0〉 atoms will be
present due to the imperfect initial spin-polarization of the beam.

Figure 4.5 shows the two-dimensional projections of FM1 for both M = 0 and
M = −1 and for the two most interesting orientations of the quantization axis z.
Discs for M = +1 were measured as well. As they were found to be identical to the
M = −1 discs, they were omitted from the figure. This is in agreement with Eq. 4.2.
The figure also shows the transition schemes used to observe the discs: either π - or
σ+-light was used to excite the atoms in the |mg=−1〉-state.

Each detector image consists of 1600 bins of size 0.10�k× 0.10�k. The approx-
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Table I: Total number of atoms N−1,i initially in state |mg=−1〉, approximate number
of atoms Nd in each disc, and estimated total probability of spontaneous emission
Ps for each subfigure in Fig. 4.5.

Subfigure N−1,i Nd Ps
(a) 85.4× 103 11.5× 103 0.27
(b) 85.4× 103 11.0× 103 0.26
(c) 84.6× 103 19.0× 103 0.45
(d) 83.3× 103 15.5× 103 0.28

imate number of atoms Nd in each disc was determined by binning only its right
half and multiplying the resulting number by two. In this way, the atoms in the
bright peak were excluded from the count. Together with the number of atoms N−1,i
initially in state |mg =−1〉 and the Clebsch-Gordan coefficients, an estimate can be
made of the total probability of spontaneous emission Ps. The results are shown in
Table I. Note that the number of atoms Nd in discs (a) and (b) are nearly equal. This
agrees with the fact that the Clebsch-Gordan coefficients for both decay processes
are equal.

Also, a Monte-Carlo simulation was performed to produce the simulated projec-
tions in Fig. 4.5. The program simulates the position of impact on the 2D-detector
of consecutive incoming atoms by using the distributions of Eqs. 4.1 and 4.2 and
a Gaussian distribution that emulates the rms minimum feature size on the 2D-
detector of 0.13�k. Simulated and measured discs contain the same number of
atoms and are binned in the same way.

The simulated distributions show excellent agreement with the measured dis-
tributions. In order to test the quantitative agreement, vertical strip profiles were
taken through the measured discs of Fig. 4.5. Figure 4.6 shows the measured one-
dimensional profiles through the center of each disc along the vertical dimension.
The width of each strip was chosen to be 0.30�k. These profiles were also simulated
using a large number of Monte-Carlo shots to achieve better statistics. Both profiles
were plotted on top of each other with the same area under both curves. Again, the
measured profiles show excellent agreement with theory. The slightly sharper fea-
tures in the simulated curves are caused by the larger bin size of the measurement
data.

6 Concluding remarks

Using atomic recoil imaging, the angular radiation distributions of spontaneous
emission via electric dipole decay were measured. Both the distributions for π - and
σ -transitions were observed independently for the first time. The excellent proper-
ties of our atomic beam allow us to test theory in high detail.

The detector images clearly show that atoms, which have undergone spontaneous
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Figure 4.5: Two-dimensional projections of FM1 . The size of each detector image is
4�k×4�k. The arrow indicates the direction of the quantization axis z. Projections in
which z is parallel to the atomic beam axis are M = −1 (a) and M = 0 (b). Projections
in which z is perpendicular to the atomic beam axis are M = −1 (c) and M = 0
(d). The direction of the running wave is indicated by arrow k and the direction of
gravity by g. The bright spots in the experimental plots constitute atoms that did
not spontaneously decay.
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z is parallel to the atomic beam axis are M = −1 (a) and M=0 (b). Projections in
which z is perpendicular to the atomic beam axis are M = −1 (c) and M=0 (d).

emission, can quite easily be distinguished from atoms that have not. This allows
us to selectively “remove” these atoms from the data in experiments where only
coherent laser-atom interactions are studied, as predicted by Knops [22]. We will
use this feature extensively in chapter 5.
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Chapter 5

A coherent beam splitter for atoms by
Bragg scattering

1 Introduction

The task of splitting a light beam in two separate parts, traveling in different direc-
tions, is an extremely easy one. Whenever light encounters an interface, defined by
a change in the index of refraction, part of the light is reflected and the remainder is
transmitted. If the separate parts are recombined and the difference in optical paths
is less than the coherence length of the light, interference effects can be observed.
This behavior can easily be understood in terms of the classical wave nature of light.

Trying to show that atoms can also behave as waves, Stern produced the first
beam splitter for atoms using a diffraction technique [1]. In this 1929-experiment
he diffracted an atomic beam from a periodic structure. With the advent of co-
herent atomic samples, produced in numerous BEC experiments [2] nowadays, it is
important to note that the beam splitters addressed in this chapter, like in Stern’s
experiment, work for single atoms. No coherence is required between atoms that
pass the beam splitter consecutively.

Since the first experiment by Stern, many techniques were explored to produce
a coherent beam splitter for atoms. A formal distinction can be made between two
different types of beam splitters. In the first type, the atom is prepared in a co-
herent superposition of internal (electronic) states. This can then be followed by a
mechanism that spatially separates the different internal states. The other type of
beam splitters does not change the internal state of the atom, but uses diffraction
to produce a coherent superposition of external (motional) states. This second type
immediately produces spatially separated paths.

In the last few years several techniques were used to produce a coherent beam
splitter for atoms, such as: diffraction from free standing transmission structures
[3], the magnetic Stern-Gerlach effect [4], splitting with running waves [5] or by stim-
ulated Raman transitions [6], the optical Stern-Gerlach effect [7], a magneto-optical
beam splitter [8], diffraction from a blazed phase-grating [9], and splitting by an
evanescent standing wave [10].

71
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Although very useful, the techniques mentioned above often have difficulties with
producing two well-defined and spatially separated output beams. It is this feature
that enables a beam splitter to be used in a flexible high-precision interferometer for
atoms [11]. In this chapter we will show that diffracting an atomic beam under the
right conditions from a standing light wave can lead to the much desired two-output
coherent beam splitter. This is an optical technique for producing a coherent beam
splitter. Optical techniques have the advantage that the fine tuning of the beam
splitter is relatively easy. The tuning is accomplished by adjusting the laser power,
frequency, polarization, and/or dimensions.

Diffraction of an atomic beam from an orthogonal standing light wave was first
studied by Moskowitz et al. [12]. Their experiment was performed in the thin-grating
or Raman-Nath regime. In this regime, the interaction time between the atom and the
light field is shorter than the oscillation period of the atom in the effective potential
well of the optical standing wave. The light field can then be seen as a diffract-
ing phase-grating for the atomic wave [13]. This allows many different momentum
states to be populated at the same time. Obviously, this is undesirable if one wants
to make a two-port beam splitter. Recently, a Bose-Einstein condensate of sodium
atoms together with a pulsed standing light wave was used to study the transition
from the thin-grating to the thick-grating regime [14]. The transition shows strong
oscillations in the occupation of the different momentum states as a function of
the pulse duration. Still, in general, more than two momentum states are occupied,
which limits its application as a two-port beam splitter.

More promising is a combination of the thick grating regime and an atomic beam
that impinges on the standing light wave under a small angle. If the angle of inci-
dence satisfies the so-called Bragg condition [13], unidirectional scattering of atoms
into a single diffraction order can occur. This regime was first studied by Martin et
al. [15] with a thermal beam of sodium atoms. Again, a sodium condensate together
with a pulsed moving optical potential was recently used to study the Bragg scat-
tering process in high resolution [16]. It was afterwards used as a tool to produce
coherent four-wave mixing in which three sodium matter waves mix to produce a
fourth [17]. Finally, with some minor modifications it was used to produce a quasi-
continuous output coupler for the BEC, also known as an atom laser [18].

Several aspects of Bragg diffraction have been studied in the last few years. A
number of experiments deal with achieving high diffraction orders, therefore pro-
ducing beam splitters with large splitting angles. Up to sixth order Bragg scattering
was observed in these experiments [16, 19]. For atomic beams [19] the main bot-
tleneck for going to arbitrary high diffraction orders is usually the finite width of
the longitudinal velocity distribution. At some point this will lead to spatial over-
lap between consecutive diffraction orders. In this chapter we will show that even
higher diffraction orders can be addressed with our setup, since the atomic beam is
highly monochromatic. Since condensates [16] have no initial longitudinal velocity,
they have to rely on an output coupling mechanism [18] whenever a specific splitting
angle is to be achieved.

Using metastable argon atoms, Oberthaler et al. [20] studied Bragg scattering
from optical potentials that contain imaginary components. With the same setup
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the influence of a time-modulated standing light wave on the diffraction process was
investigated [21] and the violation of Friedel’s law in atom optics was observed [22].

A number of experiments deal with the so-called Pendellösung effect [23] in
atomic Bragg scattering. This effect shows the oscillatory dependence of the oc-
cupation of the diffracted momentum state on either the interaction strength or the
interaction time. It was previously studied for both first and second order Bragg
scattering [24–26]. The theoretical description of the effect in terms of a two-level
approximation [19,27] is expected to fail dramatically for a combination of high or-
der Bragg scattering and strong interaction. For this purpose, we will investigate the
Pendellösung effect in fifth order Bragg scattering in this chapter.

Almost all experiments, mentioned above, try to get rid of spontaneous emis-
sion during the Bragg scattering process. By increasing both laser detuning and
laser power, the amount of spontaneous emission can be made arbitrarily small. In
this chapter, we will allow a substantial amount of spontaneous emission during
the diffraction process. As we have seen from chapter 4, atoms that undergo spon-
taneous emission once will be positioned on discs in transverse momentum space.
The shape of and density distribution over these discs were accurately measured
and found to be in excellent agreement with theory. Atoms undergoing pure Bragg
scattering will be positioned on a one-dimensional grid in transverse momentum
space. Two-dimensional detection of the momentum distribution after Bragg scat-
tering allows us to separate the atoms that have spontaneously emitted a photon
from those that had only coherent interaction with the standing light wave. This last
group of atoms is also called the coherent fraction. With our detection technique we
can therefore study the dynamics of the coherent fraction in the regime where there
is a finite possibility of spontaneous emission.

In the remainder of this chapter we will first use a simple analytical model that
gives insight into the basic features of atomic Bragg scattering. Then, we will use a
more complex numerical approach to calculate the Bragg scattering process under
experimentally realistic conditions. These calculations will be compared with the
experimental results in the last part of the chapter.

2 Analytical analysis of atomic Bragg scattering

The theoretical description of Nth order Bragg scattering can only be done analyti-
cally for arbitrary order N if rather crude approximations are made [19]. It is very
difficult to stay within these approximations in experiments where N > 1. A better
description was given by Dürr et al. [25], which can produce analytical results for
N ≤ 2. Although we are not primarily interested in low order Bragg scattering in this
chapter, we will give a summarized version of this description, since it clearly shows
the essential properties of higher order (N > 1) Bragg scattering.

Consider a two-level atom with angular transition frequency ω0 interacting with
a classical standing light wave with wavevector k along the x-axis, angular frequency
ωL, and electric field E(x, t) = 2E0 cos(kx) cos(ωLt). In a basis rotating with angular
frequency ωL, and using the rotating-wave approximation (RWA), the Hamiltonian
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reads

Ĥ = − �2

2M
∂2

∂x2
− �∆|e〉〈e| + �Ω{|e〉〈g| + |g〉〈e|} cos(kx), (5.1)

in which ground and excited state are denoted by |g〉 and |e〉, respectively, and
M is the mass of the atom. The detuning between the light field and the atom is
given by ∆ = ωL −ω0. The running-wave Rabi frequency is Ω = µE0/�, where µ is
the electric dipole matrix element between states |g〉 and |e〉. By demanding that
∆� max{Ω, Γ}, in which Γ is the spontaneous linewidth of the excited state, only a
negligible fraction of the atoms will be in the excited state during interaction.

Furthermore, we would like to get rid of the operators that represent the internal
degrees of freedom. For this purpose, consider the Hamiltonian of Eq. 5.1 in which
the position-dependent terms have been neglected:

Ĥ = −�∆|e〉〈e| + �Ω{|e〉〈g| + |g〉〈e|}. (5.2)

For large detuning, ∆ � Ω, the energy eigenstates of this Hamiltonian can be ap-
proximated by [28]

|g′〉 ≈ |g〉 + (Ω/∆)|e〉 and |e′〉 ≈ |e〉 − (Ω/∆)|g〉, (5.3)

with corresponding eigenenergies:

Eg′ ≈ �Ω2/∆ and Ee′ ≈ −�∆− �Ω2/∆. (5.4)

Most experiments use a light field that has a Gaussian beam profile in the trans-
verse direction. If the beam diameter is large enough or the atom is slow enough,
the interaction between the atom and the light turns on slowly enough to ensure
adiabatic passage. This requires that dΩ(t)

dt � ∆2. In this case the light field will
not induce any transitions between eigenstates |g′〉 and |e′〉. An atom entering in
ground state |g〉 will adiabatically follow state |g′〉 during the interaction. The light
field only shifts the energy of the ground state by �Ω2/∆, usually referred to as the
dynamical Stark shift. This way, the Hamiltonian of Eq. 5.1 can be replaced by a
version in which the internal degrees of freedom have been replaced by a position-
dependent light shift. This so-called adiabatic elimination of the excited state results
in:

Ĥ = − �2

2M
∂2

∂x2
+ �Ω2

∆
cos2(kx). (5.5)

Consider a plane atomic wave with momentum px = n�k along the standing
wave. From now on, we denote such a momentum state by |n〉. We find

Ĥ|n〉 = �ωrecn2|n〉 + �χ{2|n〉 + |n− 2〉 + |n+ 2〉}, (5.6)

in which ωrec = �k2/(2M) is the recoil frequency and χ = Ω2/(4∆) is the light-shift
parameter. The term 2�χ|n〉 can be dropped from Eq. 5.6, since it represents a
constant energy shift for all momentum states. Thus, we end up with:

Ĥ|n〉 = �ωrecn2|n〉 + �χ{|n− 2〉 + |n+ 2〉}. (5.7)
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Figure 5.1: Energy of the momentum states |n〉 as a function of n = px/�k, including
the transition scheme for second order Bragg scattering.

2.1 Momentum conservation

The atomic diffraction process can be understood by examining the Hamiltonian of
Eq. 5.7. The first term represents the kinetic energy of momentum state |n〉. The in-
teraction term shows that neighboring momentum states, that differ by two photon
momenta, are coupled by the light field. This just reflects momentum conservation:
an atom that absorbs a photon from one running wave can re-emit it into the other
running wave by stimulated emission. The total momentum of the system is con-
served, since the atomic momentum changes by two photon recoils. Absorbing a
photon from one running wave and re-emitting it into the same running wave by
stimulated emission does not transfer any net momentum from the light field to the
atom. This relatively uninteresting process is covered by the 2�χ|n〉 term in Eq. 5.6.

2.2 Energy conservation

Figure 5.1 displays the energy of the momentum states |n〉 as a function of n. Atoms
entering the light field in either |n〉 or |−n〉 have the same kinetic energy �ωrecn2.
Suppose the atom enters in momentum state |n〉. If the atom conserves its energy,
i.e., leaves the light field with the same kinetic energy then it must leave in a coherent
superposition of |n〉 and |−n〉 only. Momentum conservation further demands that
n must be an integer, since the atomic momentum can only be scattered over even
multiples of �k. This process is called nth-order Bragg scattering.

Whether the atom conserves its kinetic energy depends on the value of the atom-
field interaction time τ . For large values of τ the corresponding energy uncertainty
∆Eτ = �/τ during interaction is relatively small. As long as it is smaller than the
energy difference between the incoming momentum state and its neighboring mo-
mentum states, which is of the order of �ωrec, the atom will conserve its energy.
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2.3 Scattering probabilities

Calculating the occupation of the Bragg diffracted momentum state analytically re-
quires a few more considerations. These considerations turn out to be essential for
understanding the exact mechanism of the Pendellösung oscillations, i.e., the depen-
dence of the scattered fraction on the maximum light-shift parameter χ0 and the
interaction time τ , where:

χ(t) = χ0 exp(−2t2/τ2). (5.8)

Atomic population that initially occupies a single momentum state |n〉 will dur-
ing the interaction redistribute itself over several momentum states including off-
resonant states. To avoid that these off-resonant states remain occupied after inter-
action, the external state vector of the atom must evolve adiabatically while travers-
ing the light field. This can be accomplished by demanding that the time-dependence
of the light-shift parameter χ(t) is slow enough. For second order Bragg scattering
we find [25]: dχ(t)

dt � χ2(t) +ω2
rec. For all other orders of Bragg scattering, the cri-

terium for adiabatic evolution of the external state vector is less stringent.
The degree of occupation of an off-resonant state |m〉 during interaction is deter-

mined by the difference in kinetic energy ∆Ekin between this state and the incoming
state |n〉, as given by Eq. 5.7:

∆Ekin = �ωrec(m2 −n2). (5.9)

In the limit of small a light-shift parameter χ, i.e., χ � ∆Ekin/�, the off-resonant
state |m〉 will hardly be occupied during interaction. Such a momentum state can
easily be omitted from the calculation. A large light-shift parameter χ, however,
requires the inclusion of this momentum state in the calculation.

Take for instance second order Bragg scattering, in which |n〉 = |+2〉. For χ0 =
3ωrec, Dürr et al. [25] derive that at least the states {|−2〉, |0〉, |+2〉} have to be
included in the calculation to obtain an accurate expression for the scattered fraction
P(−2) = |〈−2|Ψout〉|2. They then find

P(−2) = sin2
[∫∞
−∞

(
−ωrec +

√
ω2

rec + χ2(t)/2
)
dt
]
, (5.10)

whereas using only the resonant states {|−2〉, |+2〉} (two-level approximation) results
in [19,27]:

P(−2) = sin2
[∫∞
−∞

χ2(t)
4ωrec

dt
]
= sin2

[√
πχ20τ
8ωrec

]
. (5.11)

Equation 5.11 can be extracted from Eq. 5.10 by expanding the root of Eq. 5.10
in a Taylor series for χ(t) � ωrec. The difference between both equations comes
from the occupation of state |0〉. Instead of only four-photon transitions that couple
states |±2〉, also two-photon transitions that couple states |0〉 and |±2〉 have to be
taken into account for χ0 ∼ ωrec. In other words, state |0〉 mixes significantly into
the eigenstate that is adiabatically followed during interaction. This influences the
dynamics of the Pendellösung oscillations dramatically. For even higher values of
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χ0 more states |m〉 with |m| = {4,6, . . .} have to be included to obtain an accurate
expression for P(−2).

For higher order (n > 2) Bragg scattering, approximations beyond the two-level
approximation quickly become intractable. The general expression for the scattered
fraction P(−n) in nth order Bragg scattering is given in the two-level approximation
by [19]:

P(−n) = sin2


√
π
2n

χn0 τ

22n−2[(n− 1)!]2ωn−1
rec

 . (5.12)

In the next section we will compare the two-level approximation with a realistic
numerical calculation of fifth order Bragg scattering.

3 Numerical model of atomic diffraction

No analytical solution can be found for a system described by the Hamiltonian of
Eq. 5.1, without using a rather large number of approximations. For this reason,
we have devised an approach to solve numerically the time-dependent Schrödinger
equation based on the Hamiltonian of Eq. 5.1. This approach does not require the
adiabatic elimination of the excited state and can also accommodate the process of
spontaneous emission.

3.1 Numerical approach

In first approximation, we ignore the process of spontaneous emission. The projec-
tion of the state vector |Ψ(t)〉 of the system on the x-axis can be written as

|Ψ(x, t)〉 = 〈x|Ψ(t)〉 =
∑
i=g,e

|i〉ψi(x, t), (5.13)

in which ψi(x, t) denotes the spatial wave function for internal state |i〉. Since
cos(kx) is a periodic function and the incoming de Broglie wave strongly resembles
a plane atomic wave, the spatial wave function ψi(x, t) is assumed to be periodic.
This allows ψi(x, t) to be written as

ψi(x, t) =
∑
n
φi,n(t) exp(inkx), (5.14)

in which φi,n(t) is the nth coefficient in the Fourier series expansion. Normalization
is demanded by the initial condition:

〈Ψ(−∞)|Ψ(−∞)〉 =
∑
i=g,e

∑
n
|φi,n(−∞)|2 = 1. (5.15)

Inserting Eqs. 5.13 and 5.14 into the time-dependent Schrödinger equation and

using the orthogonality relations
∫+π/k
−π/k exp{i(n−m)kx}dx = 2π

k δn,m and 〈g|e〉 = 0,
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the following system of coupled differential equations can be derived:

d
dt
φg,n(t) = −i{n2ωrec}φg,n(t)− i

Ω(t)
2
{φe,n−1(t)+φe,n+1(t)}, (5.16)

d
dt
φe,n(t) = −i{n2ωrec −∆}φe,n(t)− i

Ω(t)
2
{φg,n−1(t)+φg,n+1(t)}, (5.17)

in which the time-dependence of the Rabi frequency Ω(t) can be freely chosen: adia-
batic evolution of neither the internal nor the external state vector of the atom is re-
quired. This system is implemented in a FORTRAN/77 program and is solved numer-
ically on a Pentium PC for arbitrary initial state |Ψin(x)〉 that satisfies Eqs. 5.13, 5.14,
and 5.15. The program implements a total of 64 Fourier components for the ground
state and another 64 for the excited state. It uses integration and FFT routines from
the NAG FORTRAN library. An additional transformation to time-dependent basis
functions ensures numerical stability of the integration routine.

3.2 Including spontaneous emission

The coupled system of differential equations can easily be extended to include spon-
taneous emission. Under the assumption that a spontaneously emitted photon can
not be reabsorbed, we can account for the spontaneous emission by adding a damp-
ing term to the right hand side of Eq. 5.17 [29]. This damping term, −φe,n(t)Γ/2,
gradually reduces the population of both the ground state and the excited state.
At the end of the interaction region, where no laser light is present, any remaining
excited state population quickly decays.

The distribution Pcoh(n) of the coherent fraction Pcoh over the momentum states
|n〉 equals

Pcoh(n) = |〈n|〈g|Ψfinal〉|2 = |{φg,n}final|2, (5.18)

and we define Pcoh =
∑
n
Pcoh(n).

In the general case of diffraction, both the momentum states |g〉|n〉 and |e〉|n〉
can be populated simultaneously. In the special case in which the atom enters the
light field in the initial state |g〉|n〉, only the states |g〉|n±2m〉 and |e〉|n+1±2m〉
(withm being an integer) can be occupied. Figure 5.1 shows that in the case of even
order Bragg scattering even values of n represent diffraction of the ground state |g〉
and odd values of n represent diffraction of the excited state |e〉. For odd order
Bragg scattering this is exactly opposite.

Thus, the distribution Pcoh(n) produces a one-dimensional array of peaks on the
2D-detector, spaced by 2�k. These atoms have not undergone spontaneous emis-
sion, so we will use the following notations: P0(n) = Pcoh(n) and again P0 =

∑
n
P0(n).

Atoms undergoing a single spontaneous emission occupy discs located between the
array of peaks. Chapter 4 showed that these discs represent the random recoil due
to spontaneous emission and have a radius of �k. The occupation of such a disc is
denoted by P1(n). Again: P1 =

∑
n
P1(n). Atoms undergoing spontaneous emission

more than once while traversing the light field produce even more complex patterns
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on the 2D-detector. Their combined occupation will be denoted by P>1. Normaliza-
tion is ensured by: P0 + P1 + P>1 = 1.

3.3 Pendellösung behavior in fifth order Bragg scattering

To analyze the differences between the two-level approximation of Eq. 5.12 and the
numerical solution of Eq. 5.18, both are plotted as a function of the running wave
power PL in Figs. 5.2(a-b) for a realistic set of experimental parameters. Note that
χ0 ∝ PL. The parameter set is chosen such that it ensures adiabatic evolution of
both the internal and external state vector of the atom. Both plots represent the
Pendellösung effect in fifth order Bragg scattering. To allow a direct comparison
between both models, spontaneous emission is prevented in the numerical approach
by setting Γ = 0.

The figure clearly shows differences between both models. The Pendellösung
oscillations of the analytical model (a) start at a certain value of χ0 and show a
rapidly increasing oscillation frequency for increasing χ0. In the exact model (b) the
Pendellösung oscillations start at a slightly higher value of χ0 and the oscillation
frequency saturates for high values of χ0.

This behavior can be understood by comparing Eqs. 5.10 and 5.11 in the case of
second order Bragg scattering. In Eq. 5.11 the phase of the Pendellösung oscillations
depends quadratically on χ0. Equation 5.10 shows a quadratic dependence for small
χ0 that changes into a linear dependence for large χ0. Numerical calculations show
that this result can be generalized for Nth order Bragg scattering: the phase of the
Pendellösung oscillations is proportional to χN0 for small χ0 and evolves into a linear
dependence on χ0 for large χ0. Evidently, off-resonant states, coupled by two-photon
transitions, start to mix in for large χ0.

The damping of the coherent fraction P0 by spontaneous emission as a func-
tion of the running wave power PL is shown in Fig. 5.2(c). Apart from including
spontaneous emission (Γ/(2π) = 1.6 MHz) the calculations are done for the same
parameter set as used in figures 5.2(a-b). The numerical model shows that using
a red-detuned standing wave (∆/(2π) = −180 MHz, dashed line) initially results
in less spontaneous emission than using a blue-detuned standing wave (∆/(2π) =
+180 MHz, dotted line). Both curves cross at a certain value of PL.

The amount of spontaneous emission increases with increasing value of χ0. Its
dependence on laser power can easily be calculated analytically if Eq. 5.5 holds and
diffraction occurs in the Raman-Nath regime (short interaction time τ): the light
field merely acts as a phase-grating on the atomic wave [13]. Now: P0 = exp(−ns), in
which ns is the average number of spontaneously emitted photons by a single atom
traversing the light field. Using Eqs. 5.1, 5.3 and 5.8 we find

P0 = exp

− ∞∫
−∞

2Γχ(t)
∆

dt

 = exp(−χ0τc), (5.19)

in which τc = τΓ
√
2π/∆. The solid line in Fig. 5.2(c) represents Eq. 5.19, which is

invariant under changing the sign of the detuning ∆. Evidently, in the Bragg regime
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Figure 5.2: Calculated occupation of the Bragg diffracted momentum state P0(−5)
as a function of the running wave power PL. All calculations are done for the
{2s}3S1 |mg=−1〉 → {2p}3P2 |me=−2〉 transition in helium at 1083 nm. The rest of
the parameters are: interaction time τ = 3.4 µs, waist of the Gaussian laser profile
w = 0.85 mm and detuning ∆/(2π) = −180 MHz. The Pendellösung behavior was
calculated in the absence of spontaneous emission using (a) the two-level approx-
imation of Eq. 5.12 and (b) the numerical model of Eq. 5.18. The solid line in (c)
shows the exponential decay of the coherent fraction P0 by spontaneous emission
(Γ/(2π) = 1.6 MHz) in the Raman-Nath diffraction regime. In the Bragg regime, the
decay depends on the sign of the detuning: ∆/(2π) = −180 MHz (dashed line) and
∆/(2π) = +180 MHz (dotted line). In (d) the atoms enter with a mismatch ∆n = 0.15
from exact Bragg resonance and experience no spontaneous emission.
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(large τ), the dynamics of the atomic wave in the light-shift potential causes devi-
ations from Eq. 5.19. A minimum in the light-shift potential corresponds to either
a node (blue-detuned case) or an anti-node (red-detuned case) in the standing light
field. Consequently, a maximum in the light-shift potential corresponds to either an
anti-node (blue-detuned case) or a node (red-detuned case) in the standing light field.
At relatively low laser powers, the atoms are never bound by the light-shift potential.
For higher laser powers, the light-shift potential wells become deeper and the atoms
enter a bound state. In the calculation of Fig. 5.2(c), where the atoms have 25�ωrec

of incoming kinetic energy, this bound state is first encountered (in the center of
the light field) when the laser power is tuned to produce an effective π -pulse. In the
corresponding classical trajectory, these atoms spend a lot of time near the maxima
in the light-shift potential. In the red-detuned case, each maximum corresponds to
a node in the light field: the atoms spend a lot of their time in the “dark”, leading to
a relatively low amount of spontaneous emission.

Finally, we want to study the Pendellösung oscillations of atoms that enter the
light field in a momentum state |n+∆n〉, i.e., not exactly under a Bragg angle. Figure
5.2(d) shows the Pendellösung effect in fifth order Bragg scattering for ∆n = 0.15
and no spontaneous emission. The mismatch from the exact Bragg resonance re-
duces the maximum deflection efficiency. This effect increases with increasing |∆n|
until no Bragg scattering occurs for |∆n| = 0.5. Note that the deflection efficiency
increases for increasing χ0. It shows the increasing width of the Bragg resonance in
momentum space with increasing χ0.

4 Experimental setup

The setup for the experiment is nearly the same as the one used in chapter 4. Hence,
we will only describe the differences between both situations.

The light at the output of the fiber is now recollimated with a 16× microscope
objective (Melles-Griot, f = 10.8 mm) into a circular beam with waist w = 0.85 mm.
The light passes a polarizing beam splitter cube (PBSC) and a quarter wave plate
before entering the interaction chamber with circular polarization.

For Bragg scattering a standing light wave is required. For this purpose the run-
ning wave is retroreflected by a mirror (flatness: λ/4 over 25 mm) outside the vac-
uum chamber. Since the windows of the interaction chamber are not anti-reflection
(AR) coated this will create a 15% imbalance between the two running waves. The
intensity of the standing wave component will therefore be reduced by 8%. Due to
the large laser detuning (∆/(2π) = −111Γ = −180 MHz) used, the influence of the
small remaining running wave component on the atomic beam can be neglected.

Figure 5.3 shows the experimental setup. The incoming atomic beammoves along
the z′-axis. The standing light wave makes a (small) variable angle θ with the x′-axis
and is oriented along the x-axis . A small magnetic field �B of a few Gauss is applied
along the x′-axis to define the quantization axis. The direction of gravity is along the
y-axis. Rotating both the x′ and z′-axis around the y-axis over an angle θ results in
the x and z-axis. Special care was taken to avoid that light reflected from the non-
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Figure 5.3: Experimental setup for atomic Bragg scattering.

AR coated windows could interfere with the standing wave. This kind of interference
distorts the smooth shape of the optical potential and kills off the process of Bragg
scattering.

During the Bragg scattering experiments the degree of spin-polarization of the
atomic beam was not as high as in chapter 4, due to an imperfect magnetic guiding
field. The beam consists of 75% |mg=−1〉 atoms and 25% |mg=0〉 atoms, which was
measured by a Stern-Gerlach type of magnetic substate analysis. The combination
of an |mg=−1〉 atom and σ−-polarized laser light, tuned to the {2s}3S1 → {2p}3P2
transition, produces an effective two-level system for the internal state of the atom.
In the rest of the chapter we will therefore use the notation in which |g〉 = |1,−1〉
and |e〉 = |2,−2〉. We will see in the next sections that the motion of the |mg = 0〉
atoms is hardly affected by the light field due to the relatively small Clebsch-Gordan
coefficient of the |1,0〉 → |2,−1〉 transition.

5 Data analysis

Determining Pi(n) and P>1 from the experimental data is not trivial due to the over-
lap of the coherent diffraction peaks and the incoherent discs. Two approaches
have been applied. In the first approach, the data corresponding to a measured
detector pattern is binned and fitted with the theoretical detector pattern. This two-
dimensional fit function assumes that a coherent diffraction peak can be described
by a 2D Gaussian. This constitutes an approximation, as the actual peaks show
distinct non-Gaussian tails. The width of each coherent diffraction peak was deter-
mined from the detector images shown in section 7. These widths are kept fixed
during the whole fit procedure. The degree of spin-polarization of the atomic beam
and the use of σ−-polarized light will result in 93% of the atoms decaying via the
angular radiation distribution F±11 (θ). The quantization axis is oriented along the
standing wave. A disc, between two coherent diffraction peaks, can therefore be
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modeled by a radial convolution between the appropriate 2D-projection of F±11 (θ)
and a Gaussian, representing the rms minimum feature size on the 2D-detector, of
0.13�k. The whole procedure is implemented in a PASCAL program running on a
Pentium PC.

Since the fitting program is optimized for recognizing only zero and one-photon
events, its output is P ′i (n) = Pi(n)/(P0 + P1) for all n and i = {0,1}. The program is
not suited for determining P>1. We can, however, correct for multiple photon events
by using the property that spontaneous emission is a Poisson process in the limit of
low excitation. Thus, Pi =

∑
n
Pi(n) follow a Poisson distribution

Pi = exp(−ns)nis
i!

, (5.20)

in which ns is the average number of spontaneously emitted photons by a single
atom traversing the light field. Using P ′1/P ′0 = ns one can derive:

Pi(n) = P ′i (n)
(
1+ P

′
1

P ′0

)
exp

(
−P

′
1

P ′0

)
. (5.21)

We can also use a completely different fit procedure that is optimized for recog-
nizing only zero-photon events. The approach divides the detector area into strips
of width 0 ≤ dx ≤ 2�k, centered around each coherent diffraction peak n. We then
determine the fraction of atoms occupying each strip n as a function of the width
dx, denoted by Gn(dx). Evidently,

∑
n
Gn(2�k) = 1. Each curve Gn(dx) is then fitted

with a model function Gn,fit(dx) = AnG0,n(dx) + BnG>0,n(dx), in which An and Bn
are fit coefficients. The model function G0,n(dx) is the cumulative distribution func-
tion of population in the coherent diffraction peak n. G>0,n(dx) is a model function
for the cumulative distribution function of population in the strip n that has under-
gone spontaneous emission. From examining the data we find that G0,n(dx) can be
accurately approximated by: G0,n(dx) = erf(dx/wn,1) + (2/π)α × arctan(dx/wn,2),
in which α is independent from n and is determined from the peak produced by
the incoming momentum state. This corresponds to a non-cumulative distribution
function which consists of a Gaussian of width wn,1 and a Lorentzian of width wn,2.
These widths are determined from the detector images shown in section 7 and are
also kept fixed during fitting. Furthermore, we use G>0,n(dx) = dx.

This last approach is capable of immediately determining P0(n) for all n by eval-
uating P0(n) = An(α + 1). When fitting detector patterns we always use both ap-
proaches and have found that they give the same values of P0(n) to within 4%.

6 Pendellösung oscillations in fifth order Bragg scatter-
ing

Since our atomic beam is monochromatic (σv‖/v‖ = 1.5×10−2), slow (v‖ = 247 ms−1),
narrow (dbeam = 25 µm), and well-collimated (σv⊥ = 0.10vR = 9× 10−3 ms−1) we are
able to make an accurate two-port beam splitter with a large splitting angle 2θ.
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Figure 5.4: Pendellösung oscillations in fifth order Bragg scattering. Each image
contains 10000 atoms distributed over 0.07�k × 0.07�k sized bins. The incoming
momentum state is |−5〉 and the Bragg diffracted momentum state is |+5〉.



A coherent beam splitter for atoms by Bragg scattering 85

By freely varying all the experimental parameters that determine the exact shape
of the Pendellösung oscillations, we could produce a beam splitter with any desired
value of the reflection coefficient R, transmission coefficient T , and absorption co-
efficient A, where R + T + A = 1. The absorption coefficient A describes the loss
by spontaneous emission. Because of experimental simplicity we only vary the laser
power PL. In other words, we only change the maximum light-shift parameter χ0.
Even by varying just this single parameter most of the the interesting properties of
Bragg scattering can be extracted from the data. The time-dependence of the light-
shift parameter is, in the rest frame of the atom defined by t = z/v , given by

χ(t) = χ0 exp(−2(y2+v2t2)/w2) = PLΓ 2

4πw2I0∆
exp(−2y2/w2) exp(−2t2/τ2), (5.22)

in which I0 is the saturation intensity of the atomic transition (I0 = 1.67 W/m2 for
|1,−1〉 → |2,−2〉), τ = w/v , Γ/(2π) = 1.6 MHz, ∆/(2π) = −180 MHz, w = 0.85 mm
and y is the y-position of the atomic beam with respect to the center of the light
field. Ideally, y = 0. A non-zero value of |y| can therefore accommodate a slight
alignment error between the atomic beam and the standing wave.

For y = 0 and maximum laser power (PL,max = 3 mW), adiabatic elimination of
the excited state is allowed and the evolution of the system should follow the Hamil-
tonian of Eq. 5.5, since ∆/Ω0,max = 4.0 and |dΩdt |max

/∆2 = 5.6 × 10−5. It is estimated
that for maximum laser power we need τ � 0.3 µs to ensure adiabatic evolution
of the external state vector. In the experiment τ = 3.4 µs. Since χ0,max/ωrec = 69,
off-resonant momentum states are expected to be populated during interaction as
shown in section 2.3.

In this section we will present experimental results for fifth order Bragg scatter-
ing. Pendellösung oscillations are studied by varying the laser power from zero to
the maximum of 3 mW. The measured detector images for individual laser powers
are depicted in Fig. 5.4. Each image contains 10000 atoms. The area of each bin
is 0.07�k × 0.07�k. The grayscale range is the same for all of the images. The os-
cillations between the population in the incoming momentum state |−5〉 and the
resonant momentum state |+5〉 are clearly visible in the data. The influence of in-
creasing spontaneous emission can also be seen in the images: the total coherent
population decreases with increasing laser power.

The data markers in Fig. 5.5(a) show the measured occupation of both momentum
states as a function of the laser power PL. It also shows the total occupation of
the odd diffraction orders, i.e., the total coherent fraction P0. Here we define that
T = P0(−5) and R = P0(+5).

We observe that T does not go to zero. This is mainly caused by the low deflection
efficiency of the 25% |mg=0〉 atoms. The |1,0〉 → |2,−1〉 transition has a saturation
intensity of 3.34 W/m2: the |mg = 0〉 atoms will therefore only see half the light-
shift. They will obtain a lower Pendellösung phase and will experience a lower loss
due to spontaneous emission. Figure 5.5(b) shows the transmission efficiency, T/P0,
and the reflection efficiency, R/P0, as a function of PL.

The solid lines in Figs. 5.5(a-b) represent the calculated curves, based on Eq. 5.18.
The calculation has only two free parameters: the y-position of the atomic beam
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Figure 5.5: Pendellösung oscillations in fifth order Bragg scattering. (a) Measured oc-
cupation of the incoming momentum state |−5〉 (T , open circles), the Bragg diffracted
momentum state |+5〉 (R, full circles) and the total coherent fraction (P0, full squares)
as a function of the laser power PL. (b) Measured values of the transmission efficiency
T/P0 (open circles) and the reflection efficiency R/P0 (full circles) as a function of the
laser power PL. The solid lines are the calculated curves for |y| = 0.46 mm and
∆n = 0.

while traversing the light field and a possible mismatch from the exact Bragg res-
onance ∆n, both of which are very difficult to determine accurately a priori. The
rest of the parameters are taken from the experiment, including the observed de-
gree of spin-polarization of the atomic beam. For |y| = 0.46 mm and ∆n = 0 a good
agreement between theory and experiment is achieved.

For high laser power the measured reflection efficiency R/P0 is significantly lower
than the calculated value. The transmission efficiency T/P0, however, accurately
follows the calculated behavior. For these powers, population is transferred to off-
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Figure 5.6: Scaled occupation of the off-resonant odd diffraction orders, P0(n)/P0,
as a function of PL. The full circles are the measured data points and the solid lines
represent the calculated curves for |y| = 0.46 mm and ∆n = 0. The dotted lines
mark the position of the maxima in R/P0. (a) n = −7, (b) n = +7, (c) n = −3, (d)
n = +3, (e) n = −1 and (f) n = +1.

resonant odd momentum states.
The data markers in Fig. 5.6 show the scaled occupation of the off-resonant odd

diffraction orders, P0(n)/P0, as a function of PL. Only the odd diffraction orders
with |n| ≤ 7 show significant occupation. The numerical calculations show that the
occupation of each of these off-resonant states should still be below 1%. We observe
much higher values of P0(n)/P0 in the measurements. We attribute the high degree
of occupation of the off-resonant states to imperfections in the wavefront of the
standing light field, causing non-adiabatic transitions in the external state vector.
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7 Bragg scattering up to eighth order

By tuning the angle of incidence θ one can determine the order of Bragg scattering
N. For first order (N = 1) Bragg scattering θ = 0.37 mrad. As long as consecutive
diffraction orders do not merge on the 2D-detector and one can produce a suffi-
ciently high value for the Pendellösung phase, the Bragg scattering order N can be
increased. These measurements are shown in Fig. 5.7. Each detector image contains
25000 atoms. The area of each bin is 0.10�k× 0.10�k. The grayscale ranges are dif-
ferent for each individual image. They are scaled to the bin with the highest number
of atoms.

For 1 ≤ N ≤ 5 the value of R = P0(+N) was maximized, i.e., χ0 was tuned to
the first maximum of R in the Pendellösung oscillations. Figure 5.7 shows that T =
P0(−N) ≠ 0. Analysis of the data shows that T/P0 increases from 0.15 for N = 1
to 0.25 for N = 5. We believe that this is caused by the low deflection efficiency
of the 25% |mg = 0〉 atoms, as discussed in the previous section. An approximate
expression of T/P0 can be derived to be

T/P0 =

(
1− sin2

[(
1
2

)N π
2

])
f0

f0 + f−1 exp
(
−1

2χ0 exp(−2y2/w2)τc
) , (5.23)

in which f0 = 0.25 and f−1 = 0.75.
The approximation uses the χN0 -dependence of the initial part of the Pendellösung

oscillation. It also assumes that the |mg =−1〉 atoms have experienced an effective
π -pulse, which completely removes them from the incoming momentum state. Fur-
thermore, |mg = 0〉 atoms are expected to undergo less spontaneous emission due
to the lower Clebsch-Gordan coefficient. Equation 5.23 predicts that T/P0 = 0.13 for
N = 1 and 0.27 for N = 5. This agrees with the observed values.

The beam splitter for N = 2 shows some population of intermediate off-resonant
states. By moving to higher orders, the kinetic energy difference between the incom-
ing momentum state and its neighboring momentum states increases, which lowers
the occupation of the off-resonant states during interaction. This will also allow the
external state vector to evolve more adiabatically. High order beam splitters show
negligible occupation of the off-resonant states. The data thus shows increasing
adiabatic behavior of the external state vector for increasing Bragg order.

The maximum laser power PL,max = 3 mW prevents us from providing an effective
π -pulse for N > 5. Thus, beam splitters with R ≈ T are made for sixth, seventh
and eighth order Bragg scattering. This gives a maximum splitting angle of 5.9 mrad
between both ports of the beam splitter. With an atomic beam diameter of 25 µm
the atom only has to travel 4.2 mm before both momentum states of the coherent
superposition are spatially separated.

Since the diffracted beam stays well within its own diffraction order on the 2D-
detector, even for eighth order Bragg scattering, we could in principle go further if
we had more laser power. The width of the eighth order diffraction peak on the 2D-
detector is 203 µm rms. This is still considerably smaller than the projection of �k
on the detector, which is 760 µm. The incoming momentum state produces a 98 µm
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Figure 5.7: Bragg scattering for increasing order N. Each image contains 25000
atoms distributed over 0.10�k× 0.10�k sized bins.

rms peak on the detector. Note that the real width of the beams is actually smaller,
since the detector has a finite resolution of 60 µm rms. Extrapolating these results
one could theoretically go up to 34th order Bragg scattering before diffraction orders
start to overlap. This would produce a 25 mrad angle between the two output ports!

The power limitation is primarily caused by a low coupling efficiency of the laser
light into the single-mode polarization maintaining fiber. We obtain a coupling effi-
ciency of 28%. This low efficiency is primarily caused by the elliptical shape of the
laser beam and the astigmatism in the wavefront when entering the coupling lens.
Better mode-matching should improve the coupling efficiency. In the past, values
up to 70% were obtained with the same coupling optics and a different single-mode
polarization maintaining fiber [30].

Note that at N = 8 the non-linear behavior in the position determination on
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the 2D-detector becomes visible. Although the incoming momentum state hits the
detector exactly in the center, the diffracted momentum state is displaced 12 mm
towards the edge of the resistive anode, causing a non-linear charge distribution
over the four corner points of the anode. Going to N > 8 requires that either the
detector is moved closer to the interaction chamber or that the detector is placed
off-axis.

8 Concluding remarks

We have produced a coherent two-port beam splitter for He∗ with a variable splitting
ratio R/T by atomic Bragg scattering. The splitting ratio can be efficiently tuned by
altering the laser power PL. Under the current conditions we achieve a maximum
splitting angle of 5.9 mrad by allowing approximately 40% spontaneous emission.
Due to the monochromaticity of the atomic beam, both the splitting angle and the
splitting ratio are very well defined. Using more laser power PL and a higher detuning
∆, the angle could be increased and the amount of spontaneous emission could be
made smaller.

With three of these accurate beam splitters (two 50/50-beam splitters and one
100/0-beam splitter) one can make an accurate atom interferometer with a high
fringe contrast. Using tenth order Bragg scattering and the current setup we should
be able to make an interferometer with an enclosed area of 5400 mm2 and a maxi-
mum path separation of 6 mm. This allows macroscopic objects to be inserted into
the interferometer.

Since most interferometers require only one-dimensional collimation of the atomic
beam, collimating slits of 1 mm×25 µm can be used. This should provide an atomic
beam flux of 2 × 105 s−1. A high beam flux reduces the amount of shot-noise in
the readout port of the interferometer. The high degree of monochromaticity of the
atomic beam ensures a relatively large longitudinal coherence length of the atoms.
This gives the interferometer a large dynamic range.

By using better magnetic guiding, as done in chapter 4, we can produce a nearly
perfectly spin-polarized atomic beam of |mg=−1〉 atoms. Due to the low deflection
efficiency, any remaining |mg = 0〉 atoms will not be reflected by the 100/0-beam
splitter of the interferometer. This effectively removes them from the interferome-
ter.
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Summary

Over the last two decades the field of laser cooling has produced numerous tech-
niques to efficiently manipulate the quantum state of atoms. This enables the ex-
perimental verification of many textbook cases in which a single atom, residing in a
specific initial quantum state, interacts with a well-defined light field. The interaction
changes the atomic state and this can be observed with the proper detection tech-
nique. In this thesis we have implemented some of these laser cooling techniques to
produce a beam of helium atoms in the metastable {2s}3S1 state (denoted by He∗),
which is then used to perform atom optics experiments. The setup is designed in
such a way that it can be used in the future for a whole range of quantum optics and
atom optics experiments. This research was carried out in the Atomic Physics and
Quantum Electronics group at the Physics Department of the Eindhoven University
of Technology.

The experiments described in this thesis require a very high-quality He∗ beam.
For this purpose, we have constructed a beam setup that uses one longitudinal and
three two-dimensional transverse laser cooling sections, combined with a mechanical
collimating section, to produce the desired atomic beam. Atoms emerging from
a metastable helium source are collimated, slowed, focused, and compressed by
the laser cooling sections. The final mechanical collimation is taken care of by a
pair of small apertures. This way, we produce a narrow (25 µm diameter), slow
(247 ms−1), monochromatic (1.5% rms velocity spread) and ultra-collimated (36 µrad
rms divergence) He∗ beam. We achieve a beam flux of 250 s−1, which is sufficient for
the experiments described in this thesis. Without the three transverse laser cooling
sections the beam flux would be in the order of two atoms per hour. Experiments
that now require 5 minutes of data-acquisition time would then take about 4 years
or 1 Ph.D.-period to complete! In this thesis we use the helium {2s}3S1 → {2p}3P2
transition, at the optical wavelength λ = 1083 nm, for both atom optics and laser
cooling. The laser light is generated by diode lasers.

A metastable helium atom absorbing or emitting a 1083 nm photon changes its
velocity by the recoil velocity vR = 0.092 ms−1. This leads to a change in the mo-
tional state of the atom. We use a two-dimensional position-sensitive single-atom
detector, placed 2 m behind the light field, to measure the change in transverse
atomic velocity with an overall rms resolution of 0.13vR. The 2D-detector is also
used to fully characterize the atomic beam: both the initial electronic and motional
state of the atoms is measured with high precision. Information on the electronic
state is obtained by a state-selective deflection technique based on the Stern-Gerlach
effect. These measurements show that the initial atomic beam is spin-polarized if
sufficient magnetic guiding is used. Either a pure beam of m = 0 atoms, in which
m is the magnetic quantum number, or a pure beam of m = −1 atoms can be pro-
duced. The latter is of considerable importance, as it constitutes a beam of effective
two-level atoms when combined with σ−-polarized laser light.
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An atom experiencing spontaneous emission will emit a photon in a random di-
rection. The angular distributions of dipole radiation are expected to be anisotropic.
Furthermore, they depend on the polarization of the emitted photon. Two distinct
distributions, associated with decay via either a π - or a σ -transition, are predicted
by theory. In this thesis we show that both distributions can, for the first time, be in-
dependently measured. For this purpose, we let the atoms in the beam interact with
a weak running wave, which causes some of the atoms to spontaneously emit a pho-
ton. The recoil associated with the emitted photon causes the atoms to be deflected.
The corresponding deflection patterns are measured on the 2D-detector and imme-
diately reflect the angular distributions of spontaneous emission. A state-selective
deflection technique, based on the Stern-Gerlach effect, is used to distinguish be-
tween π - and σ -transitions.

In addition to studying the spontaneous radiation force, we also perform an ex-
periment in which the dipole force is dominant. Here, we let the the atomic beam
interact with an off-resonant standing light wave. The cold atoms in the beam, which
behave like plane atomic waves, are diffracted by the periodic dipole potential. By
tuning the experimental parameters into the Bragg regime, the motional state of each
atom is prepared into a coherent superposition of only two momentum states. Thus,
the standing light wave acts as a coherent beam splitter for atoms: each “splitted”
atomic wavepacket moves along two spatially separated paths at the same time. The
splitting ratio of the beam splitter is tuned with the intensity of the standing light
wave. We achieve up to eighth order Bragg scattering and produce a tunable, co-
herent beam splitter for atoms with two well-defined output ports and a maximum
splitting angle of 5.9 mrad. This leads to a macroscopic path separation of up to
12 mm on the 2D-detector. Atoms that undergo spontaneous emission during the
Bragg scattering process can easily be identified on the 2D-detector due to the ac-
quired random photon recoil. This allows us to selectively remove them from the
measurement. A possible future experiment could use three of these Bragg beam
splitters to produce an atom interferometer with a very large enclosed area between
the arms and a macroscopic path separation.

The experiments performed in this thesis show that our high-quality atomic beam
setup can be used to perform atom optics experiments with a resolution comparable
to BEC experiments. Being a beam setup, it is especially suited for future cavity QED
experiments in which the atom has to traverse the light field in less than the cavity
damping time.
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Samenvatting

Gedurende de afgelopen twee decennia zijn vele laserkoelingstechnieken ontwikkeld
om de quantumtoestand van atomen op efficiënte wijze te manipuleren. Hiermee
worden allerlei experimenten mogelijk waarin één enkel atoom, dat zich in een goed
gedefinieerde quantumtoestand bevindt, wisselwerkt met een lichtveld. Met de juiste
detectietechnieken kan de resulterende verandering in the atomaire toestand waar-
genomen worden. Sommige van deze laserkoelingstechnieken worden in dit proef-
schrift gebruikt om een bundel van helium atomen in de {2s}3S1 toestand (ook wel
He∗ genoemd) te maken, die vervolgens in verschillende atoomoptica experimenten
gebruikt wordt. De opstelling is zo ontworpen dat hij, in de toekomst, voor een hele
reeks quantumoptica en atoomoptica experimenten gebruikt kan worden. Dit onder-
zoek is uitgevoerd in de capaciteitsgroep Atoomfysica en Quantumelektronica van
de faculteit Technische Natuurkunde aan de Technische Universiteit Eindhoven.

De experimeten beschreven in dit proefschrift vereisen een hoge-precisie He∗

bundel. Daarom is een bundelopstelling gebouwd waarin één longitudinale en drie
transversale laserkoelingssecties (werkend in twee dimensies) gebruikt worden. De
uiteindelijke bundel wordt gedefinieerd door een mechanische collimatiesectie, be-
staande uit twee kleine diafragma’s. Atomen uit een metastabiele helium bron wor-
den achtereenvolgens gecollimeerd, afgeremd, gefocusseerd en gecomprimeerd door
de laserkoelingssecties. Dit resulteert in een smalle (25 µm diameter), langzame
(247 ms−1), monochromatische (1.5% rms snelheidsspreiding) en ultra-gecollimeerde
(36 µrad rms divergentie) He∗ bundel. De bundelflux bedraagt doorgaans zo’n
250 s−1, hetgeen genoeg is voor de experimenten die in dit proefschrift beschre-
ven worden. Zonder de drie transversale laserkoelingssecties zou de bundelflux op
ongeveer 2 atomen per uur uitkomen. Dan zouden experimenten, die nu maar 5
minuten duren, zo’n 4 jaar oftewel een volledige promotieduur in beslag nemen! In
dit proefschrift gebruiken we de helium {2s}3S1 → {2p}3P2 overgang, bij een golf-
lengte van λ = 1083 nm, voor zowel de atoomoptica als ook voor het laserkoelen.
Het 1083 nm licht wordt geproduceerd door laserdiodes.

Een metastabiel helium atoom dat een 1083 nm foton absorbeert of uitzendt, zal
zijn snelheid met de recoilsnelheid vR = 0.092 ms−1 veranderen. Hierdoor veran-
dert de bewegingstoestand van het atoom. De resulterende afbuiging van het atoom
wordt, met een rms resolutie van 0.13vR, waargenomen op een twee-dimensionale
positiegevoelige enkele-atoom detector. Deze is 2 m achter het lichtveld geplaatst.
De 2D-detector wordt ook gebruikt om de interne toestand van de atomen in de bun-
del met hoge nauwkeurigheid te meten. Hierbij wordt gebruik gemaakt van een toe-
standsafhankelijke afbuigingstechniek, gebaseerd op het Stern-Gerlach effect. Het
blijkt dat de atoombundel spin-gepolariseerd is zolang de atomen in voldoende mate
“magnetisch geleid” worden. Het is mogelijk om zowel een pure bundel van m = 0
atomen maken als ook een pure bundel van m = −1 atomen, waarin m het magne-
tisch quantumgetal is. Het combineren van dem = −1 bundel met σ−-gepolariseerd
laserlicht resulteert in een effectief twee-niveau systeem.
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Een atoom dat spontane emissie ondergaat, zal een foton in een willekeurige
richting uitzenden. De hoekverdelingsfuncties voor dipoolstraling zijn volgens de
theorie anisotroop. Bovendien hangen ze af van de polarisatie van het uitgezonden
foton. Een π -overgang heeft een andere verdelingsfunctie dan een σ -overgang. In
dit proefschrift worden beide verdelingsfuncties, voor het eerst, onafhankelijk van
elkaar gemeten. In het experiment wisselwerkt de atoombundel met een zwakke
lopende lichtgolf, waardoor een gedeelte van de atomen spontaan een foton uit-
zendt. De terugslag door het uitgezonden foton zorgt ervoor dat de atomen afgebo-
gen worden. De resulterende afbuigingspatronen worden gemeten met behulp van
de 2D-detector. De afbuigingspatronen geven eenduidig de ruimtelijke hoekverde-
lingsfuncties voor dipoolstraling weer. Om de π - en de σ -overgangen van elkaar
te scheiden, wordt gebruikt gemaakt van een toestandsafhankelijke afbuigingstech-
niek, gebaseerd op het Stern-Gerlach effect.

In het laatste experiment is niet de spontane emissie kracht maar de dipool-
kracht dominant. Nu wisselwerkt de atoombundel met een van resonantie verstemde
staande lichtgolf. De koude atomen in de bundel, die zich als vlakke atomaire gol-
ven gedragen, ondervinden diffractie aan de periodieke dipoolpotentiaal. Hierdoor
wordt elk atoom in een coherente superpositie van twee bewegingstoestanden ge-
bracht, mits het experiment in het Bragg-regime uitgevoerd wordt. De staande licht-
golf gedraagt zich dan als een coherente bundelsplitser voor atomen: elk “gesplitst”
atomair golfpakket beweegt langs twee ruimtelijk gescheiden paden tegelijkertijd.
The vertakkingsverhouding kan geregeld worden met de intensiteit van de staande
golf. In het experiment wordt Bragg scattering tot en met de achtste orde gerea-
liseerd. Dit resulteert in een regelbare coherente bundelsplitser voor atomen met
een maximale splitsingshoek van 5.9 mrad. Op de 2D-detector zijn de beide paden
dan zo’n 12 mm gescheiden. Atomen die spontane emissie ondergaan gedurende
Bragg scattering kunnen op de 2D-detector worden herkend door de willekeurig ge-
richte terugslag. Zij kunnen dan selectief uit de metingen verwijderd worden. In
de toekomst zou men drie van deze Bragg bundelspliters kunnen gebruiken om een
atoominterferometer te bouwen met een groot omvat oppervlak tussen de armen en
een macroscopische scheiding van de paden.

De experimenten die in dit proefschrift beschreven worden, laten zien dat de
He∗ bundelopstelling gebruikt kan worden voor atoomoptica experimenten. Hierbij
wordt een resolutie gerealiseerd die vergelijkbaar is met die van BEC experimen-
ten. Bovendien is de bundelopstelling bijzonder geschikt voor toekomstige cavity
QED experimenten, waarin het atoom het lichtveld moet passeren binnen de cavity-
dempingstijd.



Dankwoord 97

Dankwoord

Hier wil ik alle mensen bedanken die aan de totstandkoming van dit proefschrift
hebben bijgedragen en die de afgelopen 4 jaar tot zo’n gezellige tijd hebben ge-
maakt. Als ex-Delftenaar/Limburger kon ik geen betere vakgroep treffen dan AQT/B
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werkomgeving.
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den binnen de groep.
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