35 research outputs found

    Phosphorus-based compounds for EUV multilayer optics materials

    Get PDF
    We have evaluated the prospects of phosphorus-based compounds in extreme ultraviolet multilayer optics. Boron phosphide (BP) is suggested to be used as a spacer material in reflective multilayer optics operating just above the L-photoabsorption edge of P (λ ≈9.2 nm). Mo, Ag, Ru, Rh, and Pd were considered for applications as reflector materials. Our calculations for multilayer structures with perfect interfaces show that the Pd/BP material combination suggests the highest reflectivity values, exceeding 70% within the 9.2 – 10.0 nm spectral range. We also discuss the potential of fabrication of BP-based multilayer structures for optical applications in the extreme ultraviolet rang

    Surface and sub-surface oxidation of thin films using Low Energy Ion Scattering

    Get PDF
    Ru and ZrN are candidate capping layers for applications such as catalysis, electronics and optical coatings: Ru exhibits a low resistivity, high thermal stability, excellent oxidation resistance and good diffusion capabilities. ZrN is thermally stable, and is known for its good mechanical properties. Although the oxidation process has been studied for both materials, the surface and especially the sub-surface oxidation is not properly understood and well addressed. We use the sub-monolayer surface sensitivity of the low energy ion scattering (LEIS) technique for in-situ monitoring of surface oxidation and determination of the oxygen sticking probabilities. From the LEIS in-depth signal, sub-nanometer sub-surface oxidation can be determined as a function of time and from these data oxygen diffusion constants can be extracted. These data support the applications for which adequate protecting surface films are required. i) Author to whom correspondence should be addressed. Electronic mail: [email protected]

    Surface and sub-surface thermal oxidation of thin ruthenium films

    Get PDF
    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide fil

    Nanometer interface and materials control for multilayer EUV-optical applications

    No full text
    An overview is given of the progress in thin film and surface physics involved in multilayered systems with nanometer scale periodicity. When properly engineered, these enable the synthesis of reflective optics for the Extreme UV wavelength range. Design, deposition, and analysis of these structures have been driven by the demanding application of Extreme UV photolithography. This review addresses the selection of the wavelength in relation to the optical constants of materials, the layer growth mechanisms and ways to reduce layer roughness and interlayer formation. Special attention is given to the development of thin diffusion barrier layers between the materials in the multilayers to enhance the optical contrast and to reduce the interdiffusion. Practical issues like reduction of multilayer induced stress and enlargement of the reflectance bandwidth are also discussed, as well as the development of capping layers to control surface physics processes occurring under EUV irradiation. A description of the multilayer deposition techniques is given and the deposition of multilayers on large, heavily curved optics for real lithography systems is discussed. (C) 2011 Elsevier Ltd. All rights reserved
    corecore