7 research outputs found

    Motion of Solid Grains During Magnetic Field-Assisted Directional Solidification

    No full text
    International audienceIn this paper, we report the visible evidence for thermoelectric magnetic forces (TEMFs) during magnetic field-assisted directional solidification, and their potential to control the motion of solid grains(dendrite fragments or equiaxed grains). These motions are observed by means of synchrotron X-ray radiography and compared with analytic calculations for a spherical particle's motion driven only by TEMFs, which confirms that the observed solid grain motions are the combined result of the TEMFs and gravity. We also carried out corresponding 3D numerical simulations to validate the calculations and further prove our conclusion that TEMF acts on the solid grain and affects its motion trajectory

    EBSD Study on the Effect of a Strong Axial Magnetic Field on the Microstructure and Crystallography of Al-Ni Alloys During Solidification

    No full text
    International audienceThe effect of a strong magnetic field on the microstructure and crystallography of the primary and eutectic Al3Ni phases in Al-Ni alloys was investigated by using EBSD. The results show that the magnetic field significantly affected the microstructures and crystallography during both volume and directional solidification. As a result, the Al3Ni primary phases were aligned with the crystal direction along the magnetic field and formed a layer-like structure. The magnetic field intensity, solidification temperature, growth speed, and alloy composition played important roles during the alignment process of the Al3Ni primary phase. Indeed, the alignment degree increased with the magnetic field and the solidification temperature during normal solidification. Moreover, the effect of the magnetic field on the crystallography of the Al-Al3Ni eutectic in the Al-Ni alloys was also studied. The applied magnetic field modified the orientation of the preferred growth direction of the Al3Ni eutectic fiber and the crystallographic orientation relationship of the Al-Al3Ni eutectic. The orientation of the preferred growth direction of the Al3Ni eutectic fiber depended mainly on the solidification direction and the alignment of the Al3Ni primary phase. Furthermore, a method for controlling the crystallization process by adjusting the angle between the solidification direction and the magnetic field was proposed

    EBSD Study of the Influence of a High Magnetic Field on the Microstructure and Orientation of the Al-Si Eutectic During Directional Solidification

    No full text
    International audienceThe effect of a high magnetic field on the morphology of the Al-Si eutectic was investigated using EBSD technology. The results revealed that the application of the magnetic field modified the morphology of the Al-Si eutectic significantly. Indeed, the magnetic field destroyed the coupled growth of the Al-Si eutectic and caused the formation of the divorced alpha-Al and Si dendrites at low growth speeds (a parts per thousand currency sign1 mu m/s). The magnetic field was also found to refine the eutectic grains and reduce the eutectic spacing at the initial growth stage. Moreover, the magnetic field caused the occurrence of the columnar-to-equiaxed transition of the alpha-Al phase in the Al-Si eutectic. The abovementioned effects were enhanced as the magnetic field increased. This result should be attributed to the magnetic field restraining the interdiffusion of Si and Al atoms in liquid ahead of the liquid/solid interface and the thermoelectric magnetic force acting on the eutectic lamellae under the magnetic field
    corecore