747 research outputs found

    Candida pericarditis presenting with cardiac tamponade and multiple organ failure after combined damage control thoracotomy and laparotomy with splenectomy in a trauma patient: Case report and review of literature

    Get PDF
    Candida pericarditis is a rare condition which has previously been described after cardiothoracic surgery and immunosuppressive states (Geisler et al., 1981; Eng et al., 1981; Kraus et al., 1988; Kaufman et al., 1988; Tang et al., 2009; Glower et al., 1990; Carrel et al., 1991; Rabinovici et al., 1997; Canver et al., 1998; Farjah et al., 2005; Gronemeyer et al., 1982 [1-11]). We describe the case of a 19-year-old male blunt trauma patient, who survived a damage control thoracotomy and laparotomy with splenectomy, who later developed a loculated Candida pericardial effusion, complicated with cardiac tamponade and multiple organ failure, and required antifungals and surgical reintervention with thoracotomy for drainage. A literature search of the reported cases demonstrates that Candida pericarditis is indeed a rare but fatal condition if not identified and treated appropriately. This article discusses the difficulties we encountered while recognizing the disorder in our patient and proposes a guideline to adequately treat the condition in an effective and timely manner. Candida pericarditis poses a special challenge for the physician since its correct diagnosis and management requires a multidisciplinary approach

    A classical model for the negative dc conductivity of ac-driven 2D electrons near the cyclotron resonance

    Full text link
    A classical model for {\em dc} transport of two dimensional electrons in a perpendicular magnetic field and under strong irradiation is considered. We demonstrate that, near the cyclotron resonance condition, and for {\em linear} polarization of the {\em ac} field, a strong change of the diagonal component, σd\sigma_d, of the {\em dc} conductivity occurs in the presence of a {\em weak} nonparabolicity of the electron spectrum. Small change in the electron effective mass due to irradiation can lead to negative σd\sigma_d, while the Hall component of the {\em dc} conductivity remains practically unchanged. Within the model considered, the sign of σd\sigma_d depends on the relative orientation of the {\em dc} and {\em ac} fields, the sign of the detuning of the {\em ac} frequency from the cyclotron resonance, and the sign of nonparabolic term in the energy spectrum.Comment: 4 pages, 1 figur

    Diffusion Enhances Spontaneous Electroweak Baryogenesis

    Full text link
    We include the effects of diffusion in the electroweak spontaneous baryogenesis scenario and show that it can greatly enhance the resultant baryon density, by as much as a factor of 1/αw41061/\alpha_w^4 \sim 10^6 over previous estimates. Furthermore, the baryon density produced is rather insensitive to parameters characterizing the first order weak phase transition, such as the width and propagation velocity of the phase boundary.Comment: 15 pages, uses harvmac and epsf macro

    Brane World Susy Breaking from String/M Theory

    Full text link
    String and M-theory realizations of brane world supersymmetry breaking scenarios are considered in which visible sector Standard Model fields are confined on a brane, with hidden sector supersymmetry breaking isolated on a distant brane. In calculable examples with an internal manifold of any volume the Kahler potential generically contains brane--brane non-derivative contact interactions coupling the visible and hidden sectors and is not of the no-scale sequestered form. This leads to non-universal scalar masses and without additional assumptions about flavor symmetries may in general induce dangerous sflavor violation even though the Standard Model and supersymmetry branes are physically separated. Deviations from the sequestered form are dictated by bulk supersymmetry and can in most cases be understood as arising from exchange of bulk supergravity fields between branes or warping of the internal geometry. Unacceptable visible sector tree-level tachyons arise in many models but may be avoided in certain classes of compactifications. Anomaly mediated and gaugino mediated contributions to scalar masses are sub-dominant except in special circumstances such as a flat or AdS pure five--dimensional bulk geometry without bulk vector multiplets.Comment: Latex, 83 pages, references adde

    The mass insertion approximation without squark degeneracy

    Full text link
    We study the applicability of the mass insertion approximation (MIA) for calculations of neutral meson mixing when squark masses are not degenerate and, in particular, in models of alignment. We show that the MIA can give results that are much better than an order of magnitude estimate as long as the masses are not strongly hierarchical. We argue that, in an effective two-squark framework, m_q=(m_1+m_2)/2 is the best choice for the MIA expansion point, rather than, for example, m_q^2=(m_1^2+m_2^2)/2.Comment: 7 pages, revtex

    Approximability of Connected Factors

    Get PDF
    Finding a d-regular spanning subgraph (or d-factor) of a graph is easy by Tutte's reduction to the matching problem. By the same reduction, it is easy to find a minimal or maximal d-factor of a graph. However, if we require that the d-factor is connected, these problems become NP-hard - finding a minimal connected 2-factor is just the traveling salesman problem (TSP). Given a complete graph with edge weights that satisfy the triangle inequality, we consider the problem of finding a minimal connected dd-factor. We give a 3-approximation for all dd and improve this to an (r+1)-approximation for even d, where r is the approximation ratio of the TSP. This yields a 2.5-approximation for even d. The same algorithm yields an (r+1)-approximation for the directed version of the problem, where r is the approximation ratio of the asymmetric TSP. We also show that none of these minimization problems can be approximated better than the corresponding TSP. Finally, for the decision problem of deciding whether a given graph contains a connected d-factor, we extend known hardness results.Comment: To appear in the proceedings of WAOA 201

    Tests of the Gravitational Inverse-Square Law

    Full text link
    We review recent experimental tests of the gravitational inverse-square law and the wide variety of theoretical considerations that suggest the law may break down in experimentally accessible regions.Comment: 81 pages, 10 figures, submitted by permission of the Annual Review of Nuclear and Particle Science. Final version of this material is scheduled to appear in the Annual Review of Nuclear and Particle Science Vol. 53, to be published in December 2003 by Annual Reviews, http://AnnualReviews.or

    Can multi-TeV (top and other) squarks be natural in gauge mediation?

    Full text link
    We investigate whether multi-TeV (1-3 TeV) squarks can be natural in models of gauge mediated SUSY breaking. The idea is that for some boundary condition of the scalar (Higgs and stop) masses, the Higgs (mass)2^2, evaluated at the renormalization scale O(100)\sim O(100) GeV, is not very sensitive to (boundary values of) the scalar masses (this has been called ``focussing'' in recent literature). Then, the stop masses can be multi-TeV without leading to fine-tuning in electroweak symmetry breaking. {\em Minimal} gauge mediation does {\em not} lead to this focussing (for all values of tanβ\tan \beta and the messenger scale): the (boundary value of) the Higgs mass is too small compared to the stop masses. Also, in minimal gauge mediation, the gaugino masses are of the same order as the scalar masses so that multi-TeV scalars implies multi-TeV gauginos (especially gluino) leading to fine-tuning. We discuss ideas to {\em increase} the Higgs mass relative to the stop masses (so that focussing can be achieved) and also to {\em suppress} gaugino masses relative to scalar masses (or to modify the gaugino mass relations) in {\em non-minimal} models of gauge mediation -- then multi-TeV (top and other) squarks can be natural. Specific models of gauge mediation which incorporate these ideas and thus have squarks (and in some cases, the gluino) heavier than a TeV without resulting in fine-tuning are also studied and their collider signals are contrasted with those of other models which have multi-TeV squarks.Comment: LaTeX, 29 pages, 9 eps figures. Replacing an earlier version. In version 3, some references and a minor comment have been added and typos have been correcte

    A Composite Little Higgs Model

    Full text link
    We describe a natural UV complete theory with a composite little Higgs. Below a TeV we have the minimal Standard Model with a light Higgs, and an extra neutral scalar. At the TeV scale there are additional scalars, gauge bosons, and vector-like charge 2/3 quarks, whose couplings to the Higgs greatly reduce the UV sensitivity of the Higgs potential. Stabilization of the Higgs mass squared parameter, without finetuning, occurs due to a softly broken shift symmetry--the Higgs is a pseudo Nambu-Goldstone boson. Above the 10 TeV scale the theory has new strongly coupled interactions. A perturbatively renormalizable UV completion, with softly broken supersymmetry at 10 TeV is explicitly worked out. Our theory contains new particles which are odd under an exact "dark matter parity", (-1)^{(2S+3B+L)}. We argue that such a parity is likely to be a feature of many theories of new TeV scale physics. The lightest parity odd particle, or "LPOP", is most likely a neutral fermion, and may make a good dark matter candidate, with similar experimental signatures to the neutralino of the MSSM. We give a general effective field theory analysis of the calculation of corrections to precision electroweak observables.Comment: 28 page

    Debye Screening and Baryogenesis during the Electroweak Phase Transition

    Full text link
    We examine a recent claim that Debye screening will affect the charge transport mechanism of anomalous electroweak baryogenesis. We show that the effects of gauge charge screening do not affect the baryon number produced during a first order electroweak phase transition. (Requires harvmac.tex)Comment: 12 pages, UCSD-PTH-92-19, BU-HEP-92-2
    corecore