8 research outputs found

    Signature of small rings in the Raman spectra of normal and compressed amorphous silica: A combined classical and ab initio study

    Full text link
    We calculate the parallel (VV) and perpendicular (VH) polarized Raman spectra of amorphous silica. Model SiO2 glasses, uncompressed and compressed, were generated by a combination of classical and ab initio molecular-dynamics simulations and their dynamical matrices were computed within the framework of the density functional theory. The Raman scattering intensities were determined using the bond-polarizability model and a good agreement with experimental spectra was found. We confirm that the modes associated to the fourfold and threefold rings produce most of the Raman intensity of the D1 and D2 peaks, respectively, in the VV Raman spectra. Modifications of the Raman spectra upon compression are found to be in agreement with experimental data. We show that the modes associated to the fourfold rings still exist upon compression but do not produce a strong Raman intensity, whereas the ones associated to the threefold rings do. This result strongly suggests that the area under the D1 and D2 peaks is not directly proportional to the concentration of small rings in amorphous SiO2.Comment: 21 pages, 8 figures. Phys. Rev. B, in pres

    Rings and rigidity transitions in network glasses

    Full text link
    Three elastic phases of covalent networks, (I) floppy, (II) isostatically rigid and (III) stressed-rigid have now been identified in glasses at specific degrees of cross-linking (or chemical composition) both in theory and experiments. Here we use size-increasing cluster combinatorics and constraint counting algorithms to study analytically possible consequences of self-organization. In the presence of small rings that can be locally I, II or III, we obtain two transitions instead of the previously reported single percolative transition at the mean coordination number rˉ=2.4\bar r=2.4, one from a floppy to an isostatic rigid phase, and a second one from an isostatic to a stressed rigid phase. The width of the intermediate phase  rˉ~ \bar r and the order of the phase transitions depend on the nature of medium range order (relative ring fractions). We compare the results to the Group IV chalcogenides, such as Ge-Se and Si-Se, for which evidence of an intermediate phase has been obtained, and for which estimates of ring fractions can be made from structures of high T crystalline phases.Comment: 29 pages, revtex, 7 eps figure

    RAMAN STUDIES OF B2O3 GLASS STUCTURE : 10B→11B ISOTOPIC SUBSTITUTION

    No full text
    Nous présentons le déplacement des spectres Raman de B2O3 vitreux obtenus en remplaçant l'isotope 10B par l'isotope 11B, et nous interprétons les raies non déplacées (450 et 808 cm-1) en terme de modes étendus et localisés (respectivement) d'un réseau d'anneaux de "boroxol".We report the 10B→11B isotope shifts of the Raman spectra of vitreous B2O3, and interpret the unshifted lines (450 and 808 cm-1) in terms of extended and localized modes (respectively) of a network of boroxol rings

    Influence of solution parameters for the fast growth of ZnO nanostructures by laser-induced chemical liquid deposition

    No full text
    ABSTRACT: ZnO nanorods, nanoneedles, nanoparticles and nanoballs were synthesized on fused quartz substrates upon irradiation of a droplet of methanolic zinc acetate dihydrate solution by an infrared continuous wave COâ‚‚ laser for a few seconds. The addition of monoethanolamine and water to the solution improved the alignment of the nanorods and had a significant effect on the volume and morphology of the deposits. An increase of the zinc acetate concentration was found to lead to an increase of the thickness and area covered by the initial ZnO seed layer on which the nanostructures grew. By investigating the crystal structure of the deposits using x-ray and electron diffraction, we were able to show that the nanorods grow along the c axis with a high crystalline quality. Raman and photoluminescence spectroscopy confirmed the high-quality of the grown ZnO nanostructures. As a matter of fact, their photoluminescence spectra are dominated by an intense UV emission around 390 nm
    corecore