We calculate the parallel (VV) and perpendicular (VH) polarized Raman spectra
of amorphous silica. Model SiO2 glasses, uncompressed and compressed, were
generated by a combination of classical and ab initio molecular-dynamics
simulations and their dynamical matrices were computed within the framework of
the density functional theory. The Raman scattering intensities were determined
using the bond-polarizability model and a good agreement with experimental
spectra was found. We confirm that the modes associated to the fourfold and
threefold rings produce most of the Raman intensity of the D1 and D2 peaks,
respectively, in the VV Raman spectra. Modifications of the Raman spectra upon
compression are found to be in agreement with experimental data. We show that
the modes associated to the fourfold rings still exist upon compression but do
not produce a strong Raman intensity, whereas the ones associated to the
threefold rings do. This result strongly suggests that the area under the D1
and D2 peaks is not directly proportional to the concentration of small rings
in amorphous SiO2.Comment: 21 pages, 8 figures. Phys. Rev. B, in pres