18 research outputs found

    Latent class analysis variable selection

    Get PDF
    We propose a method for selecting variables in latent class analysis, which is the most common model-based clustering method for discrete data. The method assesses a variable's usefulness for clustering by comparing two models, given the clustering variables already selected. In one model the variable contributes information about cluster allocation beyond that contained in the already selected variables, and in the other model it does not. A headlong search algorithm is used to explore the model space and select clustering variables. In simulated datasets we found that the method selected the correct clustering variables, and also led to improvements in classification performance and in accuracy of the choice of the number of classes. In two real datasets, our method discovered the same group structure with fewer variables. In a dataset from the International HapMap Project consisting of 639 single nucleotide polymorphisms (SNPs) from 210 members of different groups, our method discovered the same group structure with a much smaller number of SNP

    Mixture of latent trait analyzers for model-based clustering of categorical data

    Get PDF
    Model-based clustering methods for continuous data are well established and commonly used in a wide range of applications. However, model-based clustering methods for categorical data are less standard. Latent class analysis is a commonly used method for model-based clustering of binary data and/or categorical data, but due to an assumed local independence structure there may not be a correspondence between the estimated latent classes and groups in the population of interest. The mixture of latent trait analyzers model extends latent class analysis by assuming a model for the categorical response variables that depends on both a categorical latent class and a continuous latent trait variable; the discrete latent class accommodates group structure and the continuous latent trait accommodates dependence within these groups. Fitting the mixture of latent trait analyzers model is potentially difficult because the likelihood function involves an integral that cannot be evaluated analytically. We develop a variational approach for fitting the mixture of latent trait models and this provides an efficient model fitting strategy. The mixture of latent trait analyzers model is demonstrated on the analysis of data from the National Long Term Care Survey (NLTCS) and voting in the U.S. Congress. The model is shown to yield intuitive clustering results and it gives a much better fit than either latent class analysis or latent trait analysis alone

    Gene Delivery

    No full text

    Multivariate linear regression with non-normal errors: a solution based on mixture models

    No full text
    In some situations, the distribution of the error terms of a multivariate linear regression model may depart from normality. This problem has been addressed, for example, by specifying a different parametric distribution family for the error terms, such as multivariate skewed and/or heavy-tailed distributions. A new solution is proposed, which is obtained by modelling the error term distribution through a finite mixture of multi-dimensional Gaussian components. The multivariate linear regression model is studied under this assumption. Identifiability conditions are proved and maximum likelihood estimation of the model parameters is performed using the EM algorithm. The number of mixture components is chosen through model selection criteria; when this number is equal to one, the proposal results in the classical approach. The performances of the proposed approach are evaluated through Monte Carlo experiments and compared to the ones of other approaches. In conclusion, the results obtained from the analysis of a real dataset are presented
    corecore