34 research outputs found

    Ising model on nonorientable surfaces: Exact solution for the Moebius strip and the Klein bottle

    Full text link
    Closed-form expressions are obtained for the partition function of the Ising model on an M x N simple-quartic lattice embedded on a Moebius strip and a Klein bottle for finite M and N. The finite-size effects at criticality are analyzed and compared with those under cylindrical and toroidal boundary conditions. Our analysis confirms that the central charge is c=1/2.Comment: 8 pages, 3 eps figure

    The Svetitsky-Yaffe conjecture for the plaquette operator

    Get PDF
    According to the Svetitsky-Yaffe conjecture, a (d+1)-dimensional pure gauge theory undergoing a continuous deconfinement transition is in the same universality class as a d-dimensional statistical model with order parameter taking values in the center of the gauge group. We show that the plaquette operator of the gauge theory is mapped into the energy operator of the statistical model. For d=2, this identification allows us to use conformal field theory techniques to evaluate exactly the correlation functions of the plaquette operator at the critical point. In particular, we can evaluate exactly the plaquette expectation value in presence of static sources, which gives some new insight in the structure of the color flux tube in mesons and baryons.Comment: 8 pages, LaTeX file + three .eps figure

    Universal finite size corrections and the central charge in non solvable Ising models

    Full text link
    We investigate a non solvable two-dimensional ferromagnetic Ising model with nearest neighbor plus weak finite range interactions of strength \lambda. We rigorously establish one of the predictions of Conformal Field Theory (CFT), namely the fact that at the critical temperature the finite size corrections to the free energy are universal, in the sense that they are exactly independent of the interaction. The corresponding central charge, defined in terms of the coefficient of the first subleading term to the free energy, as proposed by Affleck and Blote-Cardy-Nightingale, is constant and equal to 1/2 for all 0<\lambda<\lambda_0 and \lambda_0 a small but finite convergence radius. This is one of the very few cases where the predictions of CFT can be rigorously verified starting from a microscopic non solvable statistical model. The proof uses a combination of rigorous renormalization group methods with a novel partition function inequality, valid for ferromagnetic interactions.Comment: 43 pages, 1 figur

    Physical tests for Random Numbers in Simulations

    Full text link
    We propose three physical tests to measure correlations in random numbers used in Monte Carlo simulations. The first test uses autocorrelation times of certain physical quantities when the Ising model is simulated with the Wolff algorithm. The second test is based on random walks, and the third on blocks of n successive numbers. We apply the tests to show that recent errors in high precision simulations using generalized feedback shift register algorithms are due to short range correlations in random number sequences. We also determine the length of these correlations.Comment: 16 pages, Post Script file, HU-TFT-94-

    The critical amplitude ratio of the susceptibility in the random-site two-dimensional Ising model

    Full text link
    We present a new way of probing the universality class of the site-diluted two-dimensional Ising model. We analyse Monte Carlo data for the magnetic susceptibility, introducing a new fitting procedure in the critical region applicable even for a single sample with quenched disorder. This gives us the possibility to fit simultaneously the critical exponent, the critical amplitude and the sample dependent pseudo-critical temperature. The critical amplitude ratio of the magnetic susceptibility is seen to be independent of the concentration qq of the empty sites for all investigated values of q≤0.25q\le 0.25. At the same time the average effective exponent γeff\gamma_{eff} is found to vary with the concentration qq, which may be argued to be due to logarithmic corrections to the power law of the pure system. This corrections are canceled in the susceptibility amplitude ratio as predicted by theory. The central charge of the corresponding field theory was computed and compared well with the theoretical predictions.Comment: 6 pages, 4 figure

    Geometry, thermodynamics, and finite-size corrections in the critical Potts model

    Full text link
    We establish an intriguing connection between geometry and thermodynamics in the critical q-state Potts model on two-dimensional lattices, using the q-state bond-correlated percolation model (QBCPM) representation. We find that the number of clusters of the QBCPM has an energy-like singularity for q different from 1, which is reached and supported by exact results, numerical simulation, and scaling arguments. We also establish that the finite-size correction to the number of bonds, has no constant term and explains the divergence of related quantities as q --> 4, the multicritical point. Similar analyses are applicable to a variety of other systems.Comment: 12 pages, 6 figure

    Dynamic Critical Behavior of the Chayes-Machta Algorithm for the Random-Cluster Model. I. Two Dimensions

    Full text link
    We study, via Monte Carlo simulation, the dynamic critical behavior of the Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang dynamics for the q-state Potts ferromagnet to non-integer q \ge 1. We consider spatial dimension d=2 and 1.25 \le q \le 4 in steps of 0.25, on lattices up to 1024^2, and obtain estimates for the dynamic critical exponent z_{CM}. We present evidence that when 1 \le q \lesssim 1.95 the Ossola-Sokal conjecture z_{CM} \ge \beta/\nu is violated, though we also present plausible fits compatible with this conjecture. We show that the Li-Sokal bound z_{CM} \ge \alpha/\nu is close to being sharp over the entire range 1 \le q \le 4, but is probably non-sharp by a power. As a byproduct of our work, we also obtain evidence concerning the corrections to scaling in static observables.Comment: LaTeX2e, 75 pages including 26 Postscript figure

    Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram

    Full text link
    We describe an efficient Monte Carlo algorithm using a random walk in energy space to obtain a very accurate estimate of the density of states for classical statistical models. The density of states is modified at each step when the energy level is visited to produce a flat histogram. By carefully controlling the modification factor, we allow the density of states to converge to the true value very quickly, even for large systems. This algorithm is especially useful for complex systems with a rough landscape since all possible energy levels are visited with the same probability. In this paper, we apply our algorithm to both 1st and 2nd order phase transitions to demonstrate its efficiency and accuracy. We obtained direct simulational estimates for the density of states for two-dimensional ten-state Potts models on lattices up to 200×200200 \times 200 and Ising models on lattices up to 256×256256 \times 256. Applying this approach to a 3D ±J\pm J spin glass model we estimate the internal energy and entropy at zero temperature; and, using a two-dimensional random walk in energy and order-parameter space, we obtain the (rough) canonical distribution and energy landscape in order-parameter space. Preliminary data suggest that the glass transition temperature is about 1.2 and that better estimates can be obtained with more extensive application of the method.Comment: 22 pages (figures included
    corecore