67 research outputs found

    Radiative Mechanism to Light Fermion Masses in the MSSM

    Full text link
    In a previous work we have showed that the Z2{\cal Z}_{2}^{\prime} Symmetry, imply that the light fermions, the electron and the quarks, u,du,d and ss, get their masses only at one loop level. Here, we considere the more general hypothesis for flavour mixing in the sfermion sector in the MSSM. Then, we present our results to the masses of these light fermions and as a final result we can explain why the ss quark is heavier than the u,du,d quarks. This mechanism is in agrement with the experimental constraint on the sfermion's masses values.Comment: 22 pages, 8 figures, TeX mistakes corrected, accepted for publication in JHE

    Supergauge interactions and electroweak baryogenesis

    Get PDF
    We present a complete treatment of the diffusion processes for supersymmetric electroweak baryogenesis that characterizes transport dynamics ahead of the phase transition bubble wall within the symmetric phase. In particular, we generalize existing approaches to distinguish between chemical potentials of particles and their superpartners. This allows us to test the assumption of superequilibrium (equal chemical potentials for particles and sparticles) that has usually been made in earlier studies. We show that in the Minimal Supersymmetric Standard Model, superequilibrium is generically maintained -- even in the absence of fast supergauge interactions -- due to the presence of Yukawa interactions. We provide both analytic arguments as well as illustrative numerical examples. We also extend the latter to regions where analytical approximations are not available since down-type Yukawa couplings or supergauge interactions only incompletely equilibrate. We further comment on cases of broken superequilibrium wherein a heavy superpartner decouples from the electroweak plasma, causing a kinematic bottleneck in the chain of equilibrating reactions. Such situations may be relevant for baryogenesis within extensions of the MSSM. We also provide a compendium of inputs required to characterize the symmetric phase transport dynamics.Comment: 49 pages, 9 figure

    Nonequilibrium evolution in scalar O(N) models with spontaneous symmetry breaking

    Full text link
    We consider the out-of-equilibrium evolution of a classical condensate field and its quantum fluctuations for a scalar O(N) model with spontaneously broken symmetry. In contrast to previous studies we do not consider the large N limit, but the case of finite N, including N=1, i.e., plain λϕ4\lambda \phi^ 4 theory. The instabilities encountered in the one-loop approximation are prevented, as in the large-N limit, by back reaction of the fluctuations on themselves, or, equivalently, by including a resummation of bubble diagrams. For this resummation and its renormalization we use formulations developed recently based on the effective action formalism of Cornwall, Jackiw and Tomboulis. The formulation of renormalized equations for finite N derived here represents a useful tool for simulations with realistic models. Here we concentrate on the phase structure of such models. We observe the transition between the spontaneously broken and the symmetric phase at low and high energy densities, respectively. This shows that the typical structures expected in thermal equilibrium are encountered in nonequilibrium dynamics even at early times, i.e., before an efficient rescattering can lead to thermalization.Comment: 31 pages, 19 Figures, LaTeX; extended discussion on the basis of: fluctuations, eff. potential, correlations, analytic calculation of parametric resonance for "pion"_and_ "sigma" field

    Future Directions in Parity Violation: From Quarks to the Cosmos

    Get PDF
    I discuss the prospects for future studies of parity-violating (PV) interactions at low energies and the insights they might provide about open questions in the Standard Model as well as physics that lies beyond it. I cover four types of parity-violating observables: PV electron scattering; PV hadronic interactions; PV correlations in weak decays; and searches for the permanent electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions, Milos, Greece (May, 2006); 10 page

    Baryogenesis, Electric Dipole Moments and Dark Matter in the MSSM

    Full text link
    We study the implications for electroweak baryogenesis (EWB) within the minimal supersymmetric Standard Model (MSSM) of present and future searches for the permanent electric dipole moment (EDM) of the electron, for neutralino dark matter, and for supersymmetric particles at high energy colliders. We show that there exist regions of the MSSM parameter space that are consistent with both present two-loop EDM limits and the relic density and that allow for successful EWB through resonant chargino and neutralino processes at the electroweak phase transition. We also show that under certain conditions the lightest neutralino may be simultaneously responsible for both the baryon asymmetry and relic density. We give present constraints on chargino/neutralino-induced EWB implied by the flux of energetic neutrinos from the Sun, the prospective constraints from future neutrino telescopes and ton-sized direct detection experiments, and the possible signatures at the Large Hadron Collider and International Linear Collider.Comment: 32 pages, 10 figures; version to appear on JHE

    Out-of-equilibrium evolution of scalar fields in FRW cosmology: renormalization and numerical simulations

    Get PDF
    We present a renormalized computational framework for the evolution of a self-interacting scalar field (inflaton) and its quantum fluctuations in an FRW background geometry. We include a coupling of the field to the Ricci scalar with a general coupling parameter ξ\xi. We take into account the classical and quantum back reactions, i.e., we consider the the dynamical evolution of the cosmic scale factor. We perform, in the one-loop and in the large-N approximation, the renormalization of the equation of motion for the inflaton field, and of its energy momentum tensor. Our formalism is based on a perturbative expansion for the mode functions, and uses dimensional regularization. The renormalization procedure is manifestly covariant and the counter terms are independent of the initial state. Some shortcomings in the renormalization of the energy-momentum tensor in an earlier publication are corrected. We avoid the occurence of initial singularities by constructing a suitable class of initial states. The formalism is implemented numerically and we present some results for the evolution in the post-inflationary preheating era.Comment: 44 pages, uses latexsym, 6 pages with 11 figures in a .ps fil

    Vacuum fluctuations and topological Casimir effect in Friedmann-Robertson-Walker cosmologies with compact dimensions

    Full text link
    We investigate the Wightman function, the vacuum expectation values of the field squared and the energy-momentum tensor for a massless scalar field with general curvature coupling parameter in spatially flat Friedmann-Robertson-Walker universes with an arbitrary number of toroidally compactified dimensions. The topological parts in the expectation values are explicitly extracted and in this way the renormalization is reduced to that for the model with trivial topology. In the limit when the comoving lengths of the compact dimensions are very short compared to the Hubble length, the topological parts coincide with those for a conformal coupling and they are related to the corresponding quantities in the flat spacetime by standard conformal transformation. In the opposite limit of large comoving lengths of the compact dimensions, in dependence of the curvature coupling parameter, two regimes are realized with monotonic or oscillatory behavior of the vacuum expectation values. In the monotonic regime and for nonconformally and nonminimally coupled fields the vacuum stresses are isotropic and the equation of state for the topological parts in the energy density and pressures is of barotropic type. In the oscillatory regime, the amplitude of the oscillations for the topological part in the expectation value of the field squared can be either decreasing or increasing with time, whereas for the energy-momentum tensor the oscillations are damping.Comment: 20 pages, 2 figure

    Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model (I) -- phenomenological predictions --

    Full text link
    Theoretical predictions are given for the light-flavor sea-quark distributions including the strange quark ones on the basis of the flavor SU(3) version of the chiral quark soliton model. Careful account is taken here of the SU(3) symmetry breaking effects due to the mass difference between the strange and nonstrange quarks. This effective mass difference Δms\Delta m_s between the strange and nonstrange quarks is the only one parameter necessary for the flavor SU(3) generalization of the model. A particular emphasis of study is put on the {\it light-flavor sea-quark asymmetry} as exemplified by the observables dˉ(x)uˉ(x),dˉ(x)/uˉ(x),Δuˉ(x)Δdˉ(x)\bar{d} (x) - \bar{u} (x), \bar{d} (x) / \bar{u} (x), \Delta \bar{u} (x) - \Delta \bar{d} (x) as well as on the {\it particle-antiparticle asymmetry} of the strange quark distributions represented by s(x)sˉ(x),s(x)/sˉ(x),Δs(x)Δsˉ(x)s (x) - \bar{s} (x), s (x) / \bar{s} (x), \Delta s (x) - \Delta \bar{s} (x) etc. As for the unpolarized sea-quark distributions, the predictions of the model seem qualitatively consistent with the available phenomenological information provided by the NMC data for dˉ(x)uˉ(x)\bar{d} (x) - \bar{u} (x), the E866 data for dˉ(x)/uˉ(x)\bar{d} (x) / \bar{u} (x), the CCFR data and Barone et al.'s fit for s(x)/sˉ(x)s (x) / \bar{s} (x) etc. The model is shown to give several unique predictions also for the spin-dependent sea-quark distribution, such that Δs(x)Δsˉ(x)0\Delta s (x) \ll \Delta \bar{s}(x) \lesssim 0 and Δdˉ(x)<0<Δuˉ(x)\Delta \bar{d}(x) < 0 < \Delta \bar{u}(x), although the verification of these predictions must await more elaborate experimental investigations in the near future.Comment: 36 pages, 20 EPS figures. The revised version accepted for publication in Phys. Rev. D. The title has been changed, and the body of the paper has been divided into two pieces, i.e.. the present one which discusses the main phenomenological predictions of the model and the other one which describes the detailed formulation of the flavor SU(3) chiral quark soliton model to predict light-flavor quark and antiquark distribution functions in the nucleo

    Quantum Measurement of a Coupled Nanomechanical Resonator -- Cooper-Pair Box System

    Get PDF
    We show two effects as a result of considering the second-order correction to the spectrum of a nanomechanical resonator electrostatically coupled to a Cooper-pair box. The spectrum of the Cooper-pair box is modified in a way which depends on the Fock state of the resonator. Similarly, the frequency of the resonator becomes dependent on the state of the Cooper-pair box. We consider whether these frequency shifts could be utilized to prepare the nanomechanical resonator in a Fock state, to perform a quantum non-demolition measurement of the resonator Fock state, and to distinguish the phase states of the Cooper-pair box

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ
    corecore