53 research outputs found
Recommended from our members
Scaling laws for modeling large superconducting solenoids
The neutrino factory cooling system will consist of a long series of superconducting solenoids with a warm bore of 1.2 meters. In order to minimize the cost of the 200 to 300-meter long solenoid muon-cooling channel, the solenoids must be fabricated so that their mass is minimized. This report discusses how one can model the stress, strain and quench behavior of these large solenoid sections by building one-third to one-half scale models of the magnets. The cost of building and engineering the scale model magnets is a small fraction of the cost of fabricating a full-scale magnet section. This report discusses the limitations of the scaling approach as well as the types of superconducting solenoids for which the modeling technique is suitable
Recommended from our members
BNL superconducting storage ring magnet update
The various performance data, design and specifications for the storage ring and experimental series dipole and quadrupole magnets as well as the working line and correction coil systems are reported. The working line system includes the closed orbit dipoles, the quadrupole trim, sextupoles, octapoles, decapoles and duodecapoles. These are the magnets in the standard subunits of the Brookhaven National Laboratory Intersecting Storage Ring Accelerator ''ISABELLE.'
Recommended from our members
High gradient superconducting quadrupoles
Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed
Recommended from our members
Developmentof the 15 T Nb3Sn dipole HD2
The Superconducting Magnet Program at Lawrence Berkeley National Laboratory (LBNL) is continuing the development of HD2, a 1 m long Nb{sub 3}Sn dipole generating a dipole field of 15 T in a 36 mm clear bore. With tilted (flared) ends to avoid obstructing the beam path, HD2 represents a step towards the development of cost effective accelerator quality magnets. The design has been optimized to minimize geometric harmonics and to address iron saturation and conductor magnetization effects. The support structure is based on an external aluminum shell, pre-tensioned with pressurized bladders and interference keys. Aluminum axial rods and stainless steel end plates provide longitudinal support to the coil ends during magnet excitation. This paper reports on field quality optimization and magnet parameters. The design and fabrication of the coil and structure components, and results from coil winding, reaction, and potting are also presented
Recommended from our members
Construction and Test of 3.5 m Nb3Sn Racetrack Coils for LARP.
Development of high-performance Nb{sub 3}Sn quadrupoles is one of the major goals of the LHC Accelerator Research Program (LARP). As part of this program, long racetrack magnets were made in order to check the fabrication steps for long Nb{sub 3}Sn coils, that the changes in coil length that take place during reaction and cooldown are correctly accounted for in the quadrupole design, and the use of a long aluminum shell for the support structure. This paper reports the construction of the first long Nb{sub 3}Sn magnet with racetrack coils 3.6 m long. The magnet reached a nominal 'plateau' at 9596 A after five quenches. This is about 90% of the estimated conductor limit. The peak field in the coils at this current was 11 T
- …