2,970 research outputs found

    Mutated Hilltop Inflation : A Natural Choice for Early Universe

    Full text link
    We propose a model of inflation with a suitable potential for a single scalar field which falls in the wide class of hilltop inflation. We derive the analytical expressions for most of the physical quantities related to inflation and show that all of them represent the true behavior as required from a model of inflation. We further subject the results to observational verification by formulating the theory of perturbations based on our model followed by an estimation for the values of those observable parameters. Our model is found to be in excellent agreement with observational data. Thus, the features related to the model leads us to infer that this type of hilltop inflation may be a natural choice for explaining the early universe.Comment: 22 pages, 7 figures, 2 tables. Matches published version in JCA

    Natural Warm Inflation

    Full text link
    We derive the requirements that a generic axion-like field has to satisfy in order to play the role of the inflaton field in the warm inflation scenario. Compared to the parameter space in ordinary natural inflation models, we find that the parameter space in our model is enlarged. In particular, we avoid the problem of having an axion decay constant ff that relates to the Planck scale, which is instead present in the ordinary natural inflation models; in fact, our model can easily accommodate values of the axion decay constant that lie well below the Planck scale.Comment: 19 pages, 7 figures; version accepted in JCA

    Cosmological implications of a light dilaton

    Get PDF
    Supersymmetric Peccei-Quinn symmetry and string theory predict a complex scalar field comprising a dilaton and an axion. These fields are massless at high energies, but it is known since long that the axion is stabilized in an instanton dominated vacuum. Instantons and axions together also provide a mechanism to stabilize a dilaton, thus accounting for a dilaton as a possible cold dark matter component accompanying the axion. We briefly review the prospects of this scenario and point out further implications.Comment: LaTeX, 9 pages incl. 1 figure, reference adde

    A Deformation of Twistor Space and a Chiral Mass Term in N=4 Super Yang-Mills Theory

    Full text link
    Super twistor space admits a certain (super) complex structure deformation that preserves the Poincare subgroup of the symmetry group PSL(4|4) and depends on 10 parameters. In a previous paper [hep-th/0502076], it was proposed that in twistor string theory this deformation corresponds to augmenting N=4 super Yang-Mills theory by a mass term for the left-chirality spinors. In this paper we analyze this proposal in more detail. We calculate 4-particle scattering amplitudes of fermions, gluons and scalars and show that they are supported on holomorphic curves in the deformed twistor space.Comment: 52 pages, 15 figure

    Current correlations and quantum localization in 2D disordered systems with broken time-reversal invariance

    Full text link
    We study long-range correlations of equilibrium current densities in a two-dimensional mesoscopic system with the time reversal invariance broken by a random or homogeneous magnetic field. Our result is universal, i.e. it does not depend on the type (random potential or random magnetic field) or correlation length of disorder. This contradicts recent sigma-model calculations of Taras-Semchuk and Efetov (TS&E) for the current correlation function, as well as for the renormalization of the conductivity. We show explicitly that the new term in the sigma-model derived by TS&E and claimed to lead to delocalization does not exist. The error in the derivation of TS&E is traced to an incorrect ultraviolet regularization procedure violating current conservation and gauge invariance.Comment: 8 pages, 3 figure

    de Sitter thermodynamics and the braneworld

    Full text link
    The de Sitter thermodynamics of cosmological models with a modified Friedmann equation is considered, with particular reference to high-energy Randall-Sundrum and Gauss-Bonnet braneworlds. The Friedmann equation can be regarded as the first law of thermodynamics of an effective gravitational theory in quasi de Sitter spacetime. The associated entropy provides some selection rules for the range of the parameters of the models, and is proposed for describing tunneling processes in the class of high-energy gravities under consideration.Comment: 16 pages JHEP style, no figures. v2: references added; v3: typo corrected in Eq.(3.1), supersedes published versio

    Near-Limb Zeeman and Hanle Diagnostics

    Full text link
    "Weak" magnetic-field diagnostics in faint objects near the bright solar disk are discussed in terms of the level of non-object signatures, in particular, of the stray light in telescopes. Calculated dependencies of the stray light caused by diffraction at the 0.5-, 1.6-, and 4-meter entrance aperture are presented. The requirements for micro-roughness of refractive and reflective primary optics are compared. Several methods for reducing the stray light (the Lyot coronagraphic technique, multiple stages of apodizing in the focal and exit pupil planes, apodizing in the entrance aperture plane with a special mask), and reducing the random and systematic errors are noted. An acceptable level of stray light in telescopes is estimated for the V-profile recording with a signal-to-noise ratio greater than three. Prospects for the limb chromosphere magnetic measurements are indicated.Comment: 11 pages, 3 figure

    Asymmetric Fluid Criticality II: Finite-Size Scaling for Simulations

    Full text link
    The vapor-liquid critical behavior of intrinsically asymmetric fluids is studied in finite systems of linear dimensions, LL, focusing on periodic boundary conditions, as appropriate for simulations. The recently propounded ``complete'' thermodynamic (L)(L\to\infty) scaling theory incorporating pressure mixing in the scaling fields as well as corrections to scaling [arXiv:condmat/0212145]{[arXiv:cond-mat/0212145]}, is extended to finite LL, initially in a grand canonical representation. The theory allows for a Yang-Yang anomaly in which, when LL\to\infty, the second temperature derivative, (d2μσ/dT2)(d^{2}\mu_{\sigma}/dT^{2}), of the chemical potential along the phase boundary, μσ(T)\mu_{\sigma}(T), diverges when T\to\Tc -. The finite-size behavior of various special {\em critical loci} in the temperature-density or (T,ρ)(T,\rho) plane, in particular, the kk-inflection susceptibility loci and the QQ-maximal loci -- derived from QL(T,L)L2/<m4>LQ_{L}(T,_{L}) \equiv ^{2}_{L}/< m^{4}>_{L} where mρLm \equiv \rho - _{L} -- is carefully elucidated and shown to be of value in estimating \Tc and \rhoc. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte including an estimate of the correlation exponent ν\nu that confirms Ising-type character. The treatment is extended to the canonical representation where further complications appear.Comment: 23 pages in the two-column format (including 13 figures) This is Part II of the previous paper [arXiv:cond-mat/0212145

    Transport of Surface States in the Bulk Quantum Hall Effect

    Full text link
    The two-dimensional surface of a coupled multilayer integer quantum Hall system consists of an anisotropic chiral metal. This unusual metal is characterized by ballistic motion transverse and diffusive motion parallel (\hat{z}) to the magnetic field. Employing a network model, we calculate numerically the phase coherent two-terminal z-axis conductance and its mesoscopic fluctuations. Quasi-1d localization effects are evident in the limit of many layers. We consider the role of inelastic de-phasing effects in modifying the transport of the chiral surface sheath, discussing their importance in the recent experiments of Druist et al.Comment: 9 pages LaTex, 9 postscript figures included using eps

    Quantum-classical transition of the escape rate of uniaxial antiferromagnetic particles in an arbitrarily directed field

    Get PDF
    Quantum-classical escape rate transition has been studied for uniaxial antiferromagnetic particles with an arbitrarily directed magnetic field. In the case that the transverse and longitudinal fileds coexist, we calculate the phase boundary line between first- and second-order transitions, from which phase diagrams can be obtained. It is shown that the effects of the applied longitudinal magnetic field on quantum-classical transition vary greatly for different relative magnitudes of the non-compensation.Comment: to be appeared in Phys. Rev.
    corecore