82 research outputs found

    Percutaneous coronary intervention in the elderly: changes in case-mix and periprocedural outcomes in 31758 patients treated between 2000 and 2007

    Get PDF
    <p>Background: The elderly account for an increasing proportion of the population and have a high prevalence of coronary heart disease. Percutaneous coronary intervention (PCI) is the most common method of revascularization in the elderly. We examined whether the risk of periprocedural complications after PCI was higher among elderly (age ≥75 years) patients and whether it has changed over time.</p> <p>Methods and Results: The Scottish Coronary Revascularization Register was used to undertake a retrospective cohort study on all 31 758 patients undergoing nonemergency PCI in Scotland between April 2000 and March 2007, inclusive. There was an increase in the number and percentage of PCIs undertaken in elderly patients, from 196 (8.7%) in 2000 to 752 (13.9%) in 2007. Compared with younger patients, the elderly were more likely to have multivessel disease, multiple comorbidity, and a history of myocardial infarction or coronary artery bypass grafting (χ2 tests, all P<0.001). The elderly had a higher risk of major adverse cardiovascular events within 30 days of PCI (4.5% versus 2.7%, χ2 test P<0.001). Over the 7 years, there was a significant increase in the proportion of elderly patients who had multiple comorbidity (χ2 test for trend, P<0.001). Despite this, the underlying risk of complications did not change significantly over time either among the elderly (χ2 test for trend, P=0.142) or overall (χ2 test for trend, P=0.083).</p> <p>Conclusions: Elderly patients have a higher risk of periprocedural complications and account for an increasing proportion of PCIs. Despite this, the risk of complications after PCI has not increased over time.</p&gt

    The Kentucky Noisy Monte Carlo Algorithm for Wilson Dynamical Fermions

    Get PDF
    We develop an implementation for a recently proposed Noisy Monte Carlo approach to the simulation of lattice QCD with dynamical fermions by incorporating the full fermion determinant directly. Our algorithm uses a quenched gauge field update with a shifted gauge coupling to minimize fluctuations in the trace log of the Wilson Dirac matrix. The details of tuning the gauge coupling shift as well as results for the distribution of noisy estimators in our implementation are given. We present data for some basic observables from the noisy method, as well as acceptance rate information and discuss potential autocorrelation and sign violation effects. Both the results and the efficiency of the algorithm are compared against those of Hybrid Monte Carlo. PACS Numbers: 12.38.Gc, 11.15.Ha, 02.70.Uu Keywords: Noisy Monte Carlo, Lattice QCD, Determinant, Finite Density, QCDSPComment: 30 pages, 6 figure

    A coproduced patient and public event: An approach to developing and prioritizing ambulance performance measures

    Get PDF
    Background Patient and Public Involvement (PPI) is recognised as an important component of high quality health services research. PPI is integral within the Pre-hospital Outcomes for Evidence Based Evaluation (PhOEBE) programme. The PPI event described in detail in this paper focusses on the process of involving patients and public representatives in identifying, prioritising and refining a set of outcome measures that can be used to support ambulance service performance measurement. Objective To obtain public feedback on little known, complex aspects of ambulance service performance measurement. Design The event was co-designed and co-produced with the PhOEBE PPI reference group and PhOEBE research team. The event consisted of: brief researcher-led presentations, group discussions facilitated by the PPI reference group members and electronic voting. Setting and participants Data were collected from eighteen patient and public representatives who attended an event venue in Yorkshire. Results The results of the PPI event showed that this interactive format and mode of delivery was an effective method to obtain public feedback and produced a clear indication of which ambulance performance measures were most highly favoured by event participants. Discussion and Conclusions The event highlighted valuable contributions the PPI reference group made to the design process, supporting participant recruitment and facilitation of group discussions. In addition, the positive team working experience of the event proved a catalyst for further improvements in patient and public involvement within the PhOEBE project

    Suppression factors in diffractive photoproduction of dijets

    Full text link
    After new publications of H1 data for the diffractive photoproduction of dijets, which overlap with the earlier published H1 data and the recently published data of the ZEUS collaboration, have appeared, we have recalculated the cross sections for this process in next-to-leading order (NLO) of perturbative QCD to see whether they can be interpreted consistently. The results of these calculations are compared to the data of both collaborations. We find that the NLO cross sections disagree with the data, showing that factorization breaking occurs at that order. If direct and resolved contributions are both suppressed by the same amount, the global suppression factor depends on the transverse-energy cut. However, by suppressing only the resolved contribution, also reasonably good agreement with all the data is found with a suppression factor independent of the transverse-energy cut.Comment: 28 pages, 11 figures, 3 table

    Diagnostic yield of rare skeletal dysplasia conditions in the radiogenomics era

    Get PDF
    Background Skeletal dysplasia (SD) conditions are rare genetic diseases of the skeleton, encompassing a heterogeneous group of over 400 disorders, and represent approximately 5% of all congenital anomalies. Developments in genetic and treatment technologies are leading to unparalleled therapeutic advances; thus, it is more important than ever to molecularly confirm SD conditions. Data on ‘rates-of-molecular yields’ in SD conditions, through exome sequencing approaches, is limited. Figures of 39% and 52.5% have been reported in the USA (n = 54) and South Korea (n = 185) respectively. Methods We discuss a single-centre (in the UK) experience of whole-exome sequencing (WES) in a cohort of 15 paediatric patients (aged 5 months to 12 years) with SD disorders previously molecularly unconfirmed. Our cohort included patients with known clinical diagnoses and undiagnosed skeletal syndromes. Extensive phenotyping and expert radiological review by a panel of international SD radiology experts, coupled with a complex bioinformatics pipeline, allowed for both gene-targeted and gene-agnostic approaches. Results Significant variants leading to a likely or confirmed diagnosis were identified in 53.3% (n = 8/15) of patients; 46.7% (n = 7/15) having a definite molecular diagnosis and 6.7% (n = 1/15) having a likely molecular diagnosis. We discuss this in the context of a rare disease in general and specifically SD presentations. Of patients with known diagnoses pre-WES (n = 10), molecular confirmation occurred in 7/10 cases, as opposed to 1/5 where a diagnosis was unknown pre-test. Thus, diagnostic return is greatest where the diagnosis is known pre-test. For WGS (whole genome sequencing, the next iteration of WES), careful case selection (ideally of known diagnoses pre-test) will yield highest returns. Conclusions Our results highlight the cost-effective use of WES-targeted bioinformatic analysis as a diagnostic tool for SD, particularly patients with presumed SD, where detailed phenotyping is essential. Thorough co-ordinated clinical evaluation between clinical, radiological, and molecular teams is essential for improved yield and clinical care. WES (and WGS) yields will increase with time, allowing faster diagnoses, avoiding needless investigations, ensuring individualised patient care and patient reassurance. Further diagnoses will lead to increased information on natural history/mechanistic details, and likely increased therapies and clinical trials

    Quantitative proteomic analysis reveals maturation as a mechanism underlying glucocorticoid resistance in B lineage ALL and re-sensitization by JNK inhibition

    Get PDF
    Glucocorticoid (GC) resistance is a continuing clinical problem in childhood acute lymphoblastic leukaemia (ALL) but the underlying mechanisms remain unclear. A proteomic approach was used to compare profiles of the B-lineage ALL GC-sensitive cell line, PreB 697, and its GC-resistant sub-line, R3F9, pre- and post-dexamethasone exposure. PAX5, a transcription factor critical to B-cell development was differentially regulated in the PreB 697 compared to the R3F9 cell line in response to GC. PAX5 basal protein expression was less in R3F9 compared to its GC-sensitive parent and confirmed to be lower in other GC-resistant sub-lines of Pre B 697 and was associated with a decreased expression of the PAX5 transcriptional target, CD19. Gene set enrichment analysis showed that increasing GC-resistance was associated with differentiation from preB-II to an immature B-lymphocyte stage. GC-resistant sub-lines were shown to have higher levels of phosphorylated JNK compared to the parent line and JNK inhibition caused re-sensitization to GC. Exploiting this maturation may be key to overcoming GC resistance and targeting signalling pathways linked to the maturation state, such as JNK, may be a novel approach

    100 ancient genomes show repeated population turnovers in Neolithic Denmark.

    Get PDF
    Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales <sup>1-4</sup> . However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution <sup>5-7</sup> . Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet ( <sup>13</sup> C and <sup>15</sup> N content), mobility ( <sup>87</sup> Sr/ <sup>86</sup> Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use

    Population genomics of post-glacial western Eurasia.

    Get PDF
    Western Eurasia witnessed several large-scale human migrations during the Holocene <sup>1-5</sup> . Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations

    Publisher Correction: Population genomics of post-glacial western Eurasia.

    Get PDF

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore