1,115 research outputs found
STATIONARY SOLUTIONS IN BRANS-DICKE STOCHASTIC INFLATIONARY COSMOLOGY
In Brans-Dicke theory the Universe becomes divided after inflation into many
exponentially large domains with different values of the effective
gravitational constant. Such a process can be described by diffusion equations
for the probability of finding a certain value of the inflaton and dilaton
fields in a physical volume of the Universe. For a typical chaotic inflation
potential, the solutions for the probability distribution never become
stationary but grow forever towards larger values of the fields. We show here
that a non-minimal conformal coupling of the inflaton to the curvature scalar,
as well as radiative corrections to the effective potential, may provide a
dynamical cutoff and generate stationary solutions. We also analyze the
possibility of large nonperturbative jumps of the fluctuating inflaton scalar
field, which was recently revealed in the context of the Einstein theory. We
find that in the Brans--Dicke theory the amplitude of such jumps is strongly
suppressed.Comment: 19 pages, LaTe
Inflation with
We discuss various models of inflationary universe with . A
homogeneous universe with may appear due to creation of the
universe "from nothing" in the theories where the effective potential becomes
very steep at large , or in the theories where the inflaton field
nonminimally couples to gravity. Inflation with generally requires
intermediate first order phase transition with the bubble formation, and with a
second stage of inflation inside the bubble. It is possible to realize this
scenario in the context of a theory of one scalar field, but typically it
requires artificially bent effective potentials and/or nonminimal kinetic
terms. It is much easier to obtain an open universe in the models involving two
scalar fields. However, these models have their own specific problems. We
propose three different models of this type which can describe an open
homogeneous inflationary universe.Comment: 29 pages, LaTeX, parameters of one of the models are slightly
modifie
General Relativity as an Attractor in Scalar-Tensor Stochastic Inflation
Quantum fluctuations of scalar fields during inflation could determine the
very large-scale structure of the universe. In the case of general
scalar-tensor gravity theories these fluctuations lead to the diffusion of
fundamental constants like the Planck mass and the effective Brans--Dicke
parameter, . In the particular case of Brans--Dicke gravity, where
is constant, this leads to runaway solutions with infinitely large
values of the Planck mass. However, in a theory with variable we find
stationary probability distributions with a finite value of the Planck mass
peaked at exponentially large values of after inflation. We conclude
that general relativity is an attractor during the quantum diffusion of the
fields.Comment: LaTeX (with RevTex) 11 pages, 2 uuencoded figures appended, also
available on WWW via http://star.maps.susx.ac.uk/index.htm
Stationarity of Inflation and Predictions of Quantum Cosmology
We describe several different regimes which are possible in inflationary
cosmology. The simplest one is inflation without self-reproduction of the
universe. In this scenario the universe is not stationary. The second regime,
which exists in a broad class of inflationary models, is eternal inflation with
the self-reproduction of inflationary domains. In this regime local properties
of domains with a given density and given values of fields do not depend on the
time when these domains were produced. The probability distribution to find a
domain with given properties in a self-reproducing universe may or may not be
stationary, depending on the choice of an inflationary model. We give examples
of models where each of these possibilities can be realized, and discuss some
implications of our results for quantum cosmology. In particular, we propose a
new mechanism which may help solving the cosmological constant problem.Comment: 30 pages, Stanford preprint SU-ITP-94-24, LaTe
Quantum Creation of an Open Inflationary Universe
We discuss a dramatic difference between the description of the quantum
creation of an open universe using the Hartle-Hawking wave function and the
tunneling wave function. Recently Hawking and Turok have found that the
Hartle-Hawking wave function leads to a universe with Omega = 0.01, which is
much smaller that the observed value of Omega > 0.3. Galaxies in such a
universe would be about light years away from each other, so the
universe would be practically structureless. We will argue that the
Hartle-Hawking wave function does not describe the probability of the universe
creation. If one uses the tunneling wave function for the description of
creation of the universe, then in most inflationary models the universe should
have Omega = 1, which agrees with the standard expectation that inflation makes
the universe flat. The same result can be obtained in the theory of a
self-reproducing inflationary universe, independently of the issue of initial
conditions. However, there exist two classes of models where Omega may take any
value, from Omega > 1 to Omega << 1.Comment: 23 pages, 4 figures. New materials are added. In particular, we show
that boundary terms do not help to solve the problem of unacceptably small
Omega in the new model proposed by Hawking and Turok in hep-th/9803156. A
possibility to solve the cosmological constant problem in this model using
the tunneling wave function is discusse
Topological Defects as Seeds for Eternal Inflation
We investigate the global structure of inflationary universe both by
analytical methods and by computer simulations of stochastic processes in the
early Universe. We show that the global structure of the universe depends
crucially on the mechanism of inflation. In the simplest models of chaotic
inflation the Universe looks like a sea of thermalized phase surrounding
permanently self-reproducing inflationary domains. In the theories where
inflation occurs near a local extremum of the effective potential corresponding
to a metastable state, the Universe looks like de Sitter space surrounding
islands of thermalized phase. A similar picture appears even if the state is unstable but the effective potential has a discrete symmetry . In this case the Universe becomes divided into domains containing
different phases. These domains will be separated from each other by domain
walls. However, unlike ordinary domain walls, these domain walls will inflate,
and their thickness will exponentially grow. In the theories with continuous
symmetries inflation generates exponentially expanding strings and monopoles
surrounded by thermalized phase. Inflating topological defects will be stable,
and they will unceasingly produce new inflating topological defects. This means
that topological defects may play a role of indestructible seeds for eternal
inflation.Comment: 21 pages, 17 figures (not included), Stanford University preprint
SU--ITP--94--
Non-Abelian Vortices, Super-Yang-Mills Theory and Spin(7)-Instantons
We consider a complex vector bundle E endowed with a connection A over the
eight-dimensional manifold R^2 x G/H, where G/H = SU(3)/U(1)xU(1) is a
homogeneous space provided with a never integrable almost complex structure and
a family of SU(3)-structures. We establish an equivalence between G-invariant
solutions A of the Spin(7)-instanton equations on R^2 x G/H and general
solutions of non-Abelian coupled vortex equations on R^2. These vortices are
BPS solitons in a d=4 gauge theory obtained from N=1 supersymmetric Yang-Mills
theory in ten dimensions compactified on the coset space G/H with an
SU(3)-structure. The novelty of the obtained vortex equations lies in the fact
that Higgs fields, defining morphisms of vector bundles over R^2, are not
holomorphic in the generic case. Finally, we introduce BPS vortex equations in
N=4 super Yang-Mills theory and show that they have the same feature.Comment: 14 pages; v2: typos fixed, published versio
Low-lying excitations of a trapped rotating Bose-Einstein condensate
We investigate the low-lying excitations of a weakly-interacting,
harmonically-trapped Bose-Einstein condensed gas under rotation, in the limit
where the angular mometum of the system is much less than the number of the
atoms in the trap. We show that in the asymptotic limit the
excitation energy, measured from the energy of the lowest state, is given by
, where is the number of octupole
excitations and is the unit of the interaction energy.Comment: 3 pages, RevTex, 2 ps figures, submitted to PR
Inflationary Scenarios from Branes at Angles
We describe a simple mechanism that can lead to inflation within string-based
brane-world scenarios. The idea is to start from a supersymmetric configuration
with two parallel static Dp-branes, and slightly break the supersymmetry
conditions to produce a very flat potential for the field that parametrises the
distance between the branes, i.e. the inflaton field. This breaking can be
achieved in various ways: by slight relative rotations of the branes with small
angles, by considering small relative velocities between the branes, etc. If
the breaking parameter is sufficiently small, a large number of e-folds can be
produced within the D-brane, for small changes of the configuration in the
compactified directions. Such a process is local, i.e. it does not depend very
strongly on the compactification space nor on the initial conditions. Moreover,
the breaking induces a very small velocity and acceleration, which ensures very
small slow-roll parameters and thus an almost scale invariant spectrum of
metric fluctuations, responsible for the observed temperature anisotropies in
the microwave background. Inflation ends as in hybrid inflation, triggered by
the negative curvature of the string tachyon potential. In this paper we
elaborate on one of the simplest examples: two almost parallel D4-branes in a
flat compactified space.Comment: 29 pages, 9 eps figures, using JHEP3.cls, published in JHE
- …