82 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Epidemiology of canine parvovirus and coronavirus in dogs presented with severe diarrhoea to PDSA PetAid hospitals

    No full text
    Canine parvovirus (CPV) and canine enteric coronavirus (CECoV) are often cited as causes of diarrhoea in dogs. This study aimed to determine the prevalence of CPV and CECoV in dogs presenting with severe diarrhoea to PDSA PetAid hospitals throughout the UK. A total of 355 samples were collected from the PDSA between 2006 and 2008. All samples were tested for CPV using a long range PCR and for CECoV using RT-PCR. The prevalence of CPV was 58 per cent (95 per cent confidence interval CI 52 to 63 per cent), with some evidence for regional variation. The prevalence of CECoV was 7.9 per cent (95 per cent CI 5.1 to 10.7 per cent). Analysis showed that animals with no history of vaccination were more likely to be CPV positive, with greatest effect in younger animals. CPV-positive animals were more likely to present with depression/lethargy than CPV-negative cases. The volume of diarrhoea and the presence of haemorrhage did not appear to be associated with the likelihood of detecting CPV. This study shows that CPV is a common finding in dogs presenting to PDSA hospitals with severe diarrhoea, and that CECoV is a less common but still potentially important pathogen. It also confirms that young and unvaccinated animals appear to be more at risk of presenting with CPV

    Canine parvovirus in asymptomatic feline carriers

    No full text
    Canine parvovirus (CPV) and feline panleukopaenia virus (FPLV) are two closely related viruses, which are known to cause severe disease in younger unvaccinated animals. As well as causing disease in their respective hosts, CPV has recently acquired the feline host range, allowing it to infect both cats and dogs. As well as causing disease in dogs, there is evidence that under some circumstances CPV may also cause disease in cats. This study has investigated the prevalence of parvoviruses in the faeces of clinically healthy cats and dogs in two rescue shelters. Canine parvovirus was demonstrated in 32.5 (13/50) of faecal samples in a cross sectional study of 50 cats from a feline only shelter, and 33.9 (61/180) of faecal samples in a longitudinal study of 74 cats at a mixed canine and feline shelter. Virus was isolated in cell cultures of both canine and feline origin from all PCR-positive samples suggesting they contained viable, infectious virus. In contrast to the high CPV prevalence in cats, no FPLV was found, and none of 122 faecal samples from dogs, or 160 samples collected from the kennel environment, tested positive for parvovirus by PCR. Sequence analysis of major capsid VP2 gene from all positive samples, as well as the non-structural gene from 18 randomly selected positive samples, showed that all positive cats were shedding CPV2a or 2b, rather than FPLV. Longitudinally sampling in one shelter showed that all cats appeared to shed the same virus sequence type at each date they were positive (up to six weeks), despite a lack of clinical signs. Fifty percent of the sequences obtained here were shown to be similar to those recently obtained in a study of sick dogs in the UK (Clegg et al., 2011).These results suggest that in some circumstances, clinically normal cats may be able to shed CPV for prolonged periods of time, and raises the possibility that such cats may be important reservoirs for the maintenance of infection in both the cat and the dog population. © 2011 Elsevier B.V

    A case-control study of pathogen and lifestyle risk factors for diarrhoea in dogs

    No full text
    Diarrhoea is a common and multi-factorial condition in dogs, the aetiology of which is often incompletely understood. A case-control study was carried out to compare the carriage of some common canine enteric pathogens (enteric coronavirus, parvovirus, distemper, endoparasites, Campylobacter and Salmonella spp.), as well as lifestyle factors such as vaccination history, diet and contact with other species, in dogs presenting at first opinion veterinary practices with and without diarrhoea. Multivariable conditional logistic regression showed that dogs in the study which scavenged or had had a recent change of diet (OR 3.5, p = 0.002), had recently stayed in kennels (OR 9.5, p = 0.01), or were fed a home-cooked diet (OR 4, p = 0.002) were at a significantly greater risk of diarrhoea, whilst being female (OR 0.4, p = 0.01), currently up to date with routine vaccinations (OR 0.4, p = 0.05) and having contact with horse faeces (OR 0.4, p = 0.06) were associated with a reduced risk. None of the pathogens tested for was a significant factor in the final multivariable model suggesting that in this predominantly vaccinated population, diarrhoea may be more associated with lifestyle risk factors than specific pathogens. © 2011 Elsevier B.V

    Molecular epidemiology and phylogeny reveal complex spatial dynamics in areas where canine parvovirus is endemic

    No full text
    Canine parvovirus type 2 (CPV-2) is a severe enteric pathogen of dogs, causing high mortality in unvaccinated dogs. After emerging, CPV-2 spread rapidly worldwide. However, there is now some evidence to suggest that international transmission appears to be more restricted. In order to investigate the transmission and evolution of CPV-2 both nationally and in relation to the global situation, we have used a long-range PCR to amplify and sequence the full VP2 gene of 150 canine parvoviruses obtained from a large cross-sectional sample of dogs presenting with severe diarrhea to veterinarians in the United Kingdom, over a 2-year period. Among these 150 strains, 50 different DNA sequence types (S) were identified, and apart from one case, all appeared unique to the United Kingdom. Phylogenetic analysis provided clear evidence for spatial clustering at the international level and for the first time also at the national level, with the geographical range of some sequence types appearing to be highly restricted within the United Kingdom. Evolution of the VP2 gene in this data set was associated with a lack of positive selection. In addition, the majority of predicted amino acid sequences were identical to those found elsewhere in the world, suggesting that CPV VP2 has evolved a highly fit conformation. Based on typing systems using key amino acid mutations, 43 of viruses were CPV-2a, and 57 CPV-2b, with no type 2 or 2c found. However, phylogenetic analysis suggested complex antigenic evolution of this virus, with both type 2a and 2b viruses appearing polyphyletic. As such, typing based on specific amino acid mutations may not reflect the true epidemiology of this virus. The geographical restriction that we observed both within the United Kingdom and between the United Kingdom and other countries, together with the lack of CPV-2c in this population, strongly suggests the spread of CPV within its population may be heterogeneously subject to limiting factors. This cross-sectional study of national and global CPV phylogeographic segregation reveals a substantially more complex epidemic structure than previously described. © 2011, American Society for Microbiology

    Molecular epidemiology and phylogeny reveal complex spatial dynamics in areas where canine parvovirus is endemic

    No full text
    Canine parvovirus type 2 (CPV-2) is a severe enteric pathogen of dogs, causing high mortality in unvaccinated dogs. After emerging, CPV-2 spread rapidly worldwide. However, there is now some evidence to suggest that international transmission appears to be more restricted. In order to investigate the transmission and evolution of CPV-2 both nationally and in relation to the global situation, we have used a long-range PCR to amplify and sequence the full VP2 gene of 150 canine parvoviruses obtained from a large cross-sectional sample of dogs presenting with severe diarrhea to veterinarians in the United Kingdom, over a 2-year period. Among these 150 strains, 50 different DNA sequence types (S) were identified, and apart from one case, all appeared unique to the United Kingdom. Phylogenetic analysis provided clear evidence for spatial clustering at the international level and for the first time also at the national level, with the geographical range of some sequence types appearing to be highly restricted within the United Kingdom. Evolution of the VP2 gene in this data set was associated with a lack of positive selection. In addition, the majority of predicted amino acid sequences were identical to those found elsewhere in the world, suggesting that CPV VP2 has evolved a highly fit conformation. Based on typing systems using key amino acid mutations, 43% of viruses were CPV-2a, and 57% CPV-2b, with no type 2 or 2c found. However, phylogenetic analysis suggested complex antigenic evolution of this virus, with both type 2a and 2b viruses appearing polyphyletic. As such, typing based on specific amino acid mutations may not reflect the true epidemiology of this virus. The geographical restriction that we observed both within the United Kingdom and between the United Kingdom and other countries, together with the lack of CPV-2c in this population, strongly suggests the spread of CPV within its population may be heterogeneously subject to limiting factors. This cross-sectional study of national and global CPV phylogeographic segregation reveals a substantially more complex epidemic structure than previously described
    corecore