39 research outputs found

    Role of interference in MM-wave driven DC transport in two dimensional electron gas

    Full text link
    In this paper we point out that in addition to the density of states effect proposed in Ref.\cite{durst,anderson} one should consider the effect of constructive interference between the multi-MM-wave-photon processes shown in Fig.2. This process enhances the dark value of the conductivity. When the sample is very pure, i.e., when the transport life time is very long, this interference effect quickly diminishes as the MM-wave frequency deviates from the cyclotron frequency. In this paper we also present the linear response theory in the presence of strong harmonic time-dependent perturbation

    Microwave conductivity of a d-wave superconductor disordered by extended impurities: a real-space renormalization group approach

    Get PDF
    Using a real-space renormalization group (RSRG) technique, we compute the microwave conductivity of a d-wave superconductor disordered by extended impurities. To do this, we invoke a semiclassical approximation which naturally accesses the Andreev bound states localized near each impurity. Tunneling corrections (which are captured using the RSRG) lead to a delocalization of these quasiparticles and an associated contribution to the microwave conductivity.Comment: 8 pages, 4 figures. 2 figures added to previous versio

    Two different quasiparticle scattering rates in vortex line liquid phase of layered d-wave superconductors

    Get PDF
    We carry out a quantum mechanical analysis of the behavior of nodal quasiparticles in the vortex line liquid phase of planar d-wave superconductors. Applying a novel path integral technique we calculate a number of experimentally relevant observables and demonstrate that in the low-field regime the quasiparticle scattering rates deduced from photoemission and thermal transport data can be markedly different from that extracted from tunneling, specific heat, superfluid stiffness or spin-lattice relaxation time.Comment: Latex, 4 pages, no figure

    Violation of the Wiedemann-Franz Law in a Large-N Solution of the t-J Model

    Full text link
    We show that the Wiedemann-Franz law, which holds for Landau Fermi liquids, breaks down in a large-n treatment of the t-J model. The calculated ratio of the in-plane thermal and electrical conductivities agrees quantitatively with experiments on the normal state of the electron-doped Pr_{2-x}Ce_xCuO_4 (x = 0.15) cuprate superconductor. The violation of the Wiedemann-Franz law in the uniform phase contrasts with other properties of the phase that are Fermi liquid like.Comment: 4 pages, 2 figures. Typos corrected, one added reference, revised discussion of experiment on 214 cuprate material (x = 0.06

    Spectral and Transport Properties of d-Wave Superconductors With Strong Impurities

    Full text link
    One of the remarkable features of disordered d-wave superconductors is strong sensitivity of long range properties to the microscopic realization of the disorder potential. Particularly rich phenomenology is observed for the -- experimentally relevant -- case of dilute distributions of isolated impurity centers. Building on earlier diagrammatic analyses, the present paper derives and analyses a low energy effective field theory of this system. Specifically, the results of previous diagrammatic T-matrix approaches are extended into the perturbatively inaccessible low energy regimes, and the long range (thermal) transport behaviour of the system is discussed. It turns out that in the extreme case of a half-filled tight binding band and infinitely strong impurities (impurities at the unitary limit), the system is in a delocalized phase.Comment: 14 pages, two figures include

    Radiation induced oscillatory Hall effect in high mobility GaAs/AlGaAs devices

    Get PDF
    We examine the radiation induced modification of the Hall effect in high mobility GaAs/AlGaAs devices that exhibit vanishing resistance under microwave excitation. The modification in the Hall effect upon irradiation is characterized by (a) a small reduction in the slope of the Hall resistance curve with respect to the dark value, (b) a periodic reduction in the magnitude of the Hall resistance, RxyR_{xy}, that correlates with an increase in the diagonal resistance, RxxR_{xx}, and (c) a Hall resistance correction that disappears as the diagonal resistance vanishes.Comment: 4 pages text, 4 color figure

    Quasi-particle Lifetimes in a d_{x^2-y^2} Superconductor

    Full text link
    We consider the lifetime of quasi-particles in a d-wave superconductor due to scattering from antiferromagnetic spin-fluctuations, and explicitly separate the contribution from Umklapp processes which determines the electrical conductivity. Results for the temperature dependence of the total scattering rate and the Umklapp scattering rate are compared with relaxation rates obtained from thermal and microwave conductivity measurements, respectively.Comment: 14 pages, 4 figure

    Fermi liquid interactions and the superfluid density in d-wave superconductors

    Full text link
    We construct a phenomenological superfluid Fermi liquid theory for a two-dimensional d-wave superconductor on a square lattice, and study the effect of quasiparticle interactions on the superfluid density. Using simple models for the dispersion and the Landau interaction function, we illustrate the deviation of these results from those for the isotropic superfluid. This allows us to reconcile the value and doping dependence of the superfluid density slope at low temperature obtained from penetration depth measurements, with photoemission data on nodal quasiparticles.Comment: 5 latex pages, 1 eps-figure. submitted to PR

    Effect of controlled disorder on quasiparticle thermal transport in Bi2_2Sr2_2CaCu2_2O8_8

    Full text link
    Low temperature thermal conductivity, κ\kappa, of optimally-doped Bi2212 was studied before and after the introduction of point defects by electron irradiation. The amplitude of the linear component of κ\kappa remains unchanged, confirming the universal nature of heat transport by zero-energy quasiparticles. The induced decrease in the absolute value of κ\kappa at finite temperatures allows us to resolve a nonuniversal term in κ\kappa due to conduction by finite-energy quasiparticles. The magnitude of this term provides an estimate of the quasiparticle lifetime at subkelvin temperatures.Comment: 5 pages including 2 .eps figuer

    Effective action approach and Carlson-Goldman mode in d-wave superconductors

    Full text link
    We theoretically investigate the Carlson-Goldman (CG) mode in two-dimensional clean d-wave superconductors using the effective ``phase only'' action formalism. In conventional s-wave superconductors, it is known that the CG mode is observed as a peak in the structure factor of the pair susceptibility S(Ω,K)S(\Omega, \mathbf{K}) only just below the transition temperature T_c and only in dirty systems. On the other hand, our analytical results support the statement by Y.Ohashi and S.Takada, Phys.Rev.B {\bf 62}, 5971 (2000) that in d-wave superconductors the CG mode can exist in clean systems down to the much lower temperatures, T≈0.1TcT \approx 0.1 T_c. We also consider the manifestations of the CG mode in the density-density and current-current correlators and discuss the gauge independence of the obtained results.Comment: 23 pages, RevTeX4, 12 EPS figures; final version to appear in PR
    corecore