8 research outputs found

    The functional architecture of human knee ligaments

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D176448 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Investigation of the Biomechanic Function of Cruciate Ligaments Using Kinematics and Geometries from a Living Subject During Step Up/Down Motor Task

    No full text
    none4The modeling approach is the only possible way to estimate the biomechanic function of the different anatomical sub-structures of the knee joint in physiological conditions. Subject-specific geometry and kinematic data were the foundations of the 3D quasi-static model adopted for the present work. A previously validated cruciate ligaments model was implemented taking the anatomical twist of the fibers into account. The anatomical load components, developed by the modeled ligaments, were estimated during step up/down motor tasks. The anterior cruciate ligament never developed force, along every directions. The posterior cruciate ligament developed increasing forces with the increasing of the flexion angle until at about 70° of flexion. Bigger repeatability in the force curves was obtained in extension with respect to the flexion movement. In conclusion the proposed model was effective in evaluating loads in the anterior and posterior cruciate ligament during the execution of daily living activities.noneL. Bertozzi; R. Stagni; S. Fantozzi; A. CappelloL. Bertozzi; R. Stagni; S. Fantozzi; A. Cappell

    OP11 Experimentally validated finite element model of a human tibia with a unicompartmental knee replacement

    No full text
    Finite element (FE) analysis is widely used to calculate stresses and strains within human bone in order to improve implant designs. Although validated FE models of the human femur have been created (Lengsfeld et al., 1998), no equivalent yet exists for the tibia. The aim of this study was to create such an FE model, both with and without the tibial component of a knee replacement, and to validate it against experimental results. A set of reference axes was marked on a cleaned, fresh frozen cadaveric human tibia. Seventeen triaxial stacked strain rosettes were attached along the bone, which was then subjected to nine axial loading conditions, two four-point bending loading conditions, and a torsional loading condition using a materials testing machine (MTS 858). Deflections and strain readings were recorded. Axial loading was repeated after implantation of a knee replacement (medial tibial component, Biomet Oxford Unicompartmental Phase 3). The intact tibia was CT scanned (GE HiSpeed CT/i) and the images used to create a 3D FE mesh. The CT data was also used to map 600 transversely isotropic material properties (Rho, 1996) to individual elements. All experiments were simulated on the FE model. Measured principal strains and displacements were compared to their corresponding FE values using regression analysis. Experimental results were repeatable (mean coeffi-cients of variation for intact and implanted tibia, 5.3% and 3.9%). They correlated well with those of the FE analysis (R squared = 0.98, 0.97, 0.97, and 0.99 for axial (intact), axial (implanted), bending, torsional loading). For each of the load cases the intersects of the regression lines were small in comparison to the maximum measured strains (<1.5%). While the model was more rigid than the bone under torsional loading (slope =0.92), the opposite was true for axial (slope = 1.14 (intact) 1.24 (implanted)) and bending (slope = 1.06) loads. This is probably due to a discrepancy in the material properties of the model. Correspondence should be addressed to Mr Carlos Wigderowitz, Senior Lecturer, University Department of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Dundee DD1 9SY
    corecore