22 research outputs found

    The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell– and antibody-mediated rejection

    Get PDF
    The XV. Banff conference for allograft pathology was held in conjunction with the annual meeting of the American Society for Histocompatibility and Immunogenetics in Pittsburgh, PA (USA) and focused on refining recent updates to the classification, advances from the Banff working groups, and standardization of molecular diagnostics. This report on kidney transplant pathology details clarifications and refinements to the criteria for chronic active (CA) T cell–mediated rejection (TCMR), borderline, and antibody-mediated rejection (ABMR). The main focus of kidney sessions was on how to address biopsies meeting criteria for CA TCMR plus borderline or acute TCMR. Recent studies on the clinical impact of borderline infiltrates were also presented to clarify whether the threshold for interstitial inflammation in diagnosis of borderline should be i0 or i1. Sessions on ABMR focused on biopsies showing microvascular inflammation in the absence of C4d staining or detectable donor-specific antibodies; the potential value of molecular diagnostics in such cases and recommendations for use of the latter in the setting of solid organ transplantation are presented in the accompanying meeting report. Finally, several speakers discussed the capabilities of artificial intelligence and the potential for use of machine learning algorithms in diagnosis and personalized therapeutics in solid organ transplantation

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Overlapping Pathways to Transplant Glomerulopathy: Chronic Humoral Rejection, Hepatitis C Infection and Thrombotic Microangiopathy

    No full text
    Background:Transplant glomerulopathy (TG) has received much attention in recent years as a manifestation of chronic humoral rejection (CHR). However, many cases lack C4d deposition and/or circulating donor-specifi c antibodies, and the contribution of other potential causes has not been fully addressed.Methods: Of 209 consecutive renal allograft indication biopsies performed for chronic allograft dysfunction, 25 that met pathologic criteria of TG (>10% duplication of the GBM without immune complex deposition) were examined for various etiologies, including hepatitis C infection (HCV), thrombotic microangiopathy (TMA), and CHR. 29 cases of biopsy-proven isolated chronic calcineurin inhibitor toxicity from the same time period were used as controls for comparing the prevalence of HCV.Results: Three partially overlapping categories accounted for 84% of the cases: C4d+TG (48%), HCV+TG (36%) and TMA+TG (32%). The majority of TMA+ cases were HCV+ (63%) and the majority of HCV+ cases had TMA (56%). Donor specifi c antibodies were associated with C4d+TG (7/8 vs. 1/4 C4d-TG; P<0.02), but not with HCV+TG. The prevalence of HCV was higher in the TG group than in 29 control patients without TG (36% vs. 7%, P<0.01). HCV+TG patients developed allograft failure earlier than HCV-TG patients (67.2 ± 60.2 mo versus 153.4 ± 126.2 mo, P=0.02). On a multivariate analysis, out of HCV, TG and C4d, only HCV was found to be a signifi cant risk factor for a more rapid allograft loss.Conclusion: We conclude that TG is not a specifi c diagnosis, but a pattern of pathologic injury with 3 major overlapping pathways involving CHR, HCV infection and TMA. It is important to distinguish these mechanisms, as they may have differentprognostic and therapeutic implications

    Overlapping pathways to transplant glomerulopathy: chronic humoral rejection, hepatitis C infection, and thrombotic microangiopathy.

    Get PDF
    Transplant glomerulopathy (TG) has received much attention in recent years as a symptom of chronic humoral rejection; however, many cases lack C4d deposition and/or circulating donor-specific antibodies (DSAs). To determine the contribution of other causes, we studied 209 consecutive renal allograft indication biopsies for chronic allograft dysfunction, of which 25 met the pathological criteria of TG. Three partially overlapping etiologies accounted for 21 (84%) cases: C4d-positive (48%), hepatitis C-positive (36%), and thrombotic microangiopathy (TMA)-positive (32%) TG. The majority of patients with confirmed TMA were also hepatitis C positive, and the majority of hepatitis C-positive patients had TMA. DSAs were significantly associated with C4d-positive but not with hepatitis C-positive TG. The prevalence of hepatitis C was significantly higher in the TG group than in 29 control patients. Within the TG cohort, those who were hepatitis C-positive developed allograft failure significantly earlier than hepatitis C-negative patients. Thus, TG is not a specific diagnosis but a pattern of pathological injury involving three major overlapping pathways. It is important to distinguish these mechanisms, as they may have different prognostic and therapeutic implications

    RAPD (Random Amplified Polymorphic DNA) profiles of ten macaque species

    No full text
    Here, we report on the RAPD profiles of 61 individuals belonging to 10 macaque species. We used 23 different PCR primers on each sample and found an average of 17 bands per primer. The RAPD profiles appear to be highly reproducible because we found no differences in the amplification patterns produced by the DNA extracted from hair or blood. Strikingly, each species had a unique RAPD pattern homogeneously shared by all individuals. Comparisons between taxa showed that variability in the RAPD pattern was low, and the Sm index was below 0.601. Cluster analysis led to a division of the macaques into two main clusters: One with M. sylvanus and M. silenus and the other with M. arctoides, mulatta, fascicularis, nemestrina, tonkeana and fuscata. Macaca nigra and M. radiata were positioned outside of these clusters. Gene flow may explain the zoogeographic pattern present in the RAPD profiles. The lack of within-specie s variability suggests the operation of founder effects and strong genetic drift, which may have been particularly strong in the case of peripherally placed species such as M. radiata, fuscata and nigra. The position of M. tonkeana is divergent from all the commonly accepted taxonomic and phylogenetic schemes. This result suggests that the RAPD technique is not always able to reveal the "true" phylogenetic relationships within the genus Macaca. The nature of genetic variation uncovered by the RAPD method is still unclear, and prudence should guide inferences about nucleotide divergence, population structure and phylogeny based solely on RAPD markers
    corecore