4 research outputs found

    Disregulation of ocular morphogenesis by lens-specific expression of FGF-3/int-2 in transgenic mice

    No full text
    FGF-3, originally named int-2, was discovered as an oncogene frequently activated in mammary carcinomas resulting from the chromosomal integration of the mouse mammary tumor virus (MMTV). Int-2 was later designated FGF-3 based on sequence homology with other members of the fibroblast growth factor (FGF) family. FGF-1 is the prototypical member of the FGF family, and is the only family member which activates all known FGF receptor isoforms. Transgenic mice expressing in the lens a form of FGF-1 engineered to be secreted show premature differentiation of the entire lens epithelium. In contrast, transgenic mice engineered to secrete FGF-2 in the lens do not undergo premature differentiation of the lens epithelium (C. M. Stolenet al.,1997,Development124, 4009–4017). To further assess the roles of FGFs and FGF receptors in lens development, the αA-crystallin promoter was used to target expression of FGF-3 to the developing lens of transgenic mice. The expression of FGF-3 in the lens rapidly induced epithelial cells throughout the lens to elongate and to express fiber cell-specific proteins including MIP and β-crystallins. This premature differentiation of the lens epithelium was followed by the degeneration of the entire lens. Since FGF-1 and FGF-3 can both activate one FGF receptor isoform (FGFR2 IIIb) that is not activated by FGF-2, these results suggest that activation of FGFR2 IIIb is sufficient to induce fiber cell differentiation throughout the lens epitheliumin vivo.Furthermore, transgenic lens cells expressing FGF-3 were able to induce the differentiation of neighboring nontransgenic lens epithelial cells in chimeric mice. Expression of FGF-3 in the lens also resulted in developmental alterations of the eyelids, cornea, and retina, and in the most severely affected transgenic lines, the postnatal appearance of intraocular glandular struct

    A 76-bp deletion in the Mip gene causes autosomal dominant cataract in Hfi mice.

    No full text
    Item does not contain fulltextHfi is a dominant cataract mutation where heterozygotes show hydropic lens fibers and homozygotes show total lens opacity. The Hfi locus was mapped to the distal part of mouse chromosome 10 close to the major intrinsic protein (Mip), which is expressed only in cell membranes of lens fibers. Molecular analysis of Mip revealed a 76-bp deletion that resulted in exon 2 skipping in Mip mRNA. In Hfi/Hfi this deletion resulted in a complete absence of the wildtype Mip. In contrast, Hfi/+ animals had the same amount of wildtype Mip as +/+. Results from pulse-chase expression studies excluded hetero-oligomerization of wildtype and mutant Mip as a possible mechanism for cataract formation in the Hfi/+. We propose that the cataract phenotype in the Hfi heterozygote mutant is due to a detrimental gain of function by the mutant Mip resulting in either cytotoxicity or disruption in processing of other proteins important for the lens. Cataract formation in the Hfi/Hfi mouse is probably a combined result of both the complete loss of wildtype Mip and a gain of function of the mutant Mip
    corecore