31 research outputs found
Tight-binding parameters for charge transfer along DNA
We systematically examine all the tight-binding parameters pertinent to
charge transfer along DNA. The molecular structure of the four DNA bases
(adenine, thymine, cytosine, and guanine) is investigated by using the linear
combination of atomic orbitals method with a recently introduced
parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are
discussed and then used for calculating the corresponding wavefunctions of the
two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO
and LUMO energies of the bases are in good agreement with available
experimental values. Our results are then used for estimating the complete set
of charge transfer parameters between neighboring bases and also between
successive base-pairs, considering all possible combinations between them, for
both electrons and holes. The calculated microscopic quantities can be used in
mesoscopic theoretical models of electron or hole transfer along the DNA double
helix, as they provide the necessary parameters for a tight-binding
phenomenological description based on the molecular overlap. We find that
usually the hopping parameters for holes are higher in magnitude compared to
the ones for electrons, which probably indicates that hole transport along DNA
is more favorable than electron transport. Our findings are also compared with
existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table
Charge dynamics through pi-stacked arrays of conjugated molecules: effect of dynamic disorder in different transport/transfer regimes
We provide further computational evidence that the electronic coupling between pi-stacked molecules is strongly modulated by the thermal motions at room temperature, not only in supramolecular flexible systems (like DNA) but also in molecular crystals. The effect of this modulation on the charge dynamics is different for different transfer/transport mechanisms and depends on the modulation timescale. In the case of charge transfer (CT) between a donor and an acceptor, the effect of electronic coupling fluctuations introduces a corrective term in the expression of the rate constant (different for adiabatic and non-adiabatic CT). For the transport in molecular crystals, this fluctuation can be the limiting factor for the charge mobility. Although the fluctuation of the electronic coupling is similar in magnitude for all systems containing molecular pi-stacking, its importance for the charge dynamics increases with the decrease of the reorganization energy
Initiating Electron Transfer in Doubly Curved Nanographene Upon Supramolecular Complexation of C60
A semi-empirical molecular orbital study of freestanding and fullerene-encapsulated Mo nanoclusters
The influence of proton transfer on the metalsubstrate interaction in the active sites of zinc dependent enzymes
Molecular-orbital study of the relative stability of protonated nucleic acid base pairs
A simple COSMO-based method for calculation of hydration energies of neutral molecules
A simple, non-iterative method to estimate hydration free energies of neutral molecules, ESE, is developed. It requires only atomic charges computed for isolated species. To obtain the solvation free energy, the COSMO electrostatic term is supplemented by an extra correction that describes the cavitation energy, van der Waals and specific interactions. This term depends on atomic parameters that are adjusted using a reference dataset. Despite its simplicity, the ESE method provides accurate hydration energies with a mean absolute error below 1 kcal mol-1, superseding most accurate existing polarization continuum methods. We show that the proposed scheme can be directly extended to non-aqueous solutions. © 2019 the Owner Societies