8 research outputs found

    Hypercoagulation detected by routine and global laboratory hemostasis assays in patients with infective endocarditis

    No full text
    Background Coagulation system is heavily involved into the process of infective endocarditis (IE) vegetation formation and can facilitate further embolization. In this study we aimed to assess the coagulation and platelet state in IE implementing a wide range of standard and global laboratory assays. We also aim to determine whether prothrombotic genetic polymorphisms play any role in embolization and mortality in IE patients. Methods 37 patients with IE were enrolled into the study. Coagulation was assessed using standard coagulation assays (activated partial thromboplastin time (APTT), prothrombin, fibrinogen, D-dimer concentrations) and integral assays (thromboelastography (TEG) and thrombodynamics (TD)). Platelet functional activity was estimated by flow cytometry. Single nuclear polymorphisms of coagulation system genes were studied. Results Fibrinogen concentration and fibrinogen-dependent parameters of TEG and TD were increased in patients indicating systemic inflammation. In majority of patients clot growth rate in thrombodynamics was significantly shifted towards hypercoagulation in consistency with D-dimers elevation. However, in some patients prothrombin, thromboelastography and thrombodynamics were shifted towards hypocoagulation. Resting platelets were characterized by glycoprotein IIb-IIIa activation and degranulation. In patients with fatal IE, we observed a significant decrease in fibrinogen and thrombodynamics. In patients with embolism, we observed a significant decrease in the TEG R parameter. No association of embolism or mortality with genetic polymorphisms was found in our cohort. Conclusions Our findings suggest that coagulation in patients with infective endocarditis is characterized by general hypercoagulability and platelet pre-activation. Some patients, however, have hypocoagulant coagulation profile, which presumably can indicate progressing of hypercoagulation into consumption coagulopathy. © 2021 Koltsova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    GLONASS

    No full text
    The Global’naya Navigatsionnaya Sputnikova Sistema (GLONASS) is a global navigation satellite system developed by the Russian Federation. Similar to its US counterpart, the NAVSTAR global positioning system (GPS), GLONASS provides dualfrequency L-band navigation signals for civil and military navigation. Initiated in the 1980s, the system first achieved its full operational capability in 1995. Following a temporary degradation, the nominal constellation of 24 satellites was ultimately reestablished in 2011 and the system has been in continued service since then. This chapter describes the architecture and operations of GLONASS and discusses its current performance. In addition, the planned evolution of the space and ground segment are outlined
    corecore