42 research outputs found

    Refraction of Electromagnetic Energy for Wave Packets Incident on a Negative Index Medium is Always Negative

    Full text link
    We analyze refraction of electromagnetic wave packets on passing from an isotropic positive to an isotropic negative refractive index medium. We definitively show that in all cases the energy is always refracted negatively. For localized wave packets, the group refraction is also always negative.Comment: 5 pages, 3 figure

    Life after charge noise: recent results with transmon qubits

    Full text link
    We review the main theoretical and experimental results for the transmon, a superconducting charge qubit derived from the Cooper pair box. The increased ratio of the Josephson to charging energy results in an exponential suppression of the transmon's sensitivity to 1/f charge noise. This has been observed experimentally and yields homogeneous broadening, negligible pure dephasing, and long coherence times of up to 3 microseconds. Anharmonicity of the energy spectrum is required for qubit operation, and has been proven to be sufficient in transmon devices. Transmons have been implemented in a wide array of experiments, demonstrating consistent and reproducible results in very good agreement with theory.Comment: 6 pages, 4 figures. Review article, accepted for publication in Quantum Inf. Pro

    Resonant and anti-resonant frequency dependence of the effective parameters of metamaterials

    Full text link
    We present a numerical study of the electromagnetic response of the metamaterial elements that are usedto construct materials with negative refractive index. For an array of split ring resonators (SRR) we find that the resonant behavior of the effective magnetic permeability is accompanied by an anti-resonant behavior of the effective permittivity. In addition, the imaginary parts of the effective permittivity and permeability are opposite in sign. We also observe an identical resonant versus anti-resonant frequency dependence of the effective materials parameters for a periodic array of thin metallic wires with cuts placed periodically along the length of the wire, with roles of the permittivity and permeability reversed from the SRR case. We show in a simple manner that the finite unit cell size is responsible for the anti-resonant behavior

    A spherical perfect lens

    Full text link
    It has been recently proved that a slab of negative refractive index material acts as a perfect lens in that it makes accessible the sub-wavelength image information contained in the evanescent modes of a source. Here we elaborate on perfect lens solutions to spherical shells of negative refractive material where magnification of the near-field images becomes possible. The negative refractive materials then need to be spatially dispersive with ϵ(r)1/r\epsilon(r) \sim 1/r and μ(r)1/r\mu(r)\sim 1/r. We concentrate on lens-like solutions for the extreme near-field limit. Then the conditions for the TM and TE polarized modes become independent of μ\mu and ϵ\epsilon respectively.Comment: Revtex4, 9 pages, 2 figures (eps

    A polarized beam splitter using an anisotropic medium slab

    Full text link
    The propagation of electromagnetic waves in the anisotropic medium with a single-sheeted hyperboloid dispersion relation is investigated. It is found that in such an anisotropic medium E- and H-polarized waves have the same dispersion relation, while E- and H-polarized waves exhibit opposite amphoteric refraction characteristics. E- (or H-) polarized waves are positively refracted whereas H- (or E-) polarized waves are negatively refracted at the interface associated with the anisotropic medium. By suitably using the properties of anomalous refraction in the anisotropic medium it is possible to realize a very simple and very efficient beam splitter to route the light. It is shown that the splitting angle and the splitting distance between E- and H- polarized beam is the function of anisotropic parameters, incident angle and slab thickness.Comment: 14 pages, 6 figure

    Mesoscopic mean-field theory for spin-boson chains in quantum optical systems

    Get PDF
    We present a theoretical description of a system of many spins strongly coupled to a bosonic chain. We rely on the use of a spin-wave theory describing the Gaussian fluctuations around the mean-field solution, and focus on spin-boson chains arising as a generalization of the Dicke Hamiltonian. Our model is motivated by experimental setups such as trapped ions, or atoms/qubits coupled to cavity arrays. This situation corresponds to the cooperative (E⊗β) Jahn-Teller distortion studied in solid-state physics. However, the ability to tune the parameters of the model in quantum optical setups opens up a variety of novel intriguing situations. The main focus of this paper is to review the spin-wave theoretical description of this problem as well as to test the validity of mean-field theory. Our main result is that deviations from mean-field effects are determined by the interplay between magnetic order and mesoscopic cooperativity effects, being the latter strongly size-dependent

    Out-of-equilibrium singlet-triplet Kondo effect in a single C_60 quantum dot

    Full text link
    We have used an electromigration technique to fabricate a C60\rm{C_{{60}}} single-molecule transistor (SMT). Besides describing our electromigration procedure, we focus and present an experimental study of a single molecule quantum dot containing an even number of electrons, revealing, for two different samples, a clear out-of-equilibrium Kondo effect. Low temperature magneto-transport studies are provided, which demonstrates a Zeeman splitting of the finite bias anomaly.Comment: 6 pages, 4 figure

    The Interspersed Spin Boson Lattice Model

    Full text link
    We describe a family of lattice models that support a new class of quantum magnetism characterized by correlated spin and bosonic ordering [Phys. Rev. Lett. 112, 180405 (2014)]. We explore the full phase diagram of the model using Matrix-Product-State methods. Guided by these numerical results, we describe a modified variational ansatz to improve our analytic description of the groundstate at low boson frequencies. Additionally, we introduce an experimental protocol capable of inferring the low-energy excitations of the system by means of Fano scattering spectroscopy. Finally, we discuss the implementation and characterization of this model with current circuit-QED technology.Comment: Submitted to EPJ ST issue on "Novel Quantum Phases and Mesoscopic Physics in Quantum Gases

    Electromagnetic-field quantization and spontaneous decay in left-handed media

    Full text link
    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.Comment: 15 pages, 5 figures, RevTe

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
    corecore