9 research outputs found
Incipient Separation in Shock Wave Boundary Layer Interactions as Induced by Sharp Fin
The incipient separation induced by the shock wave turbulent boundary layer
interaction at the sharp fin is the subject of present study. Existing theories
for the prediction of incipient separation, such as those put forward by McCabe
(1966) and Dou and Deng (1992), can have thus far only predicting the direction
of surface streamline and tend to over-predict the incipient separation
condition based on the Stanbrook's criterion. In this paper, the incipient
separation is firstly predicted with Dou and Deng (1992)'s theory and then
compared with Lu and Settles (1990)' experimental data. The physical mechanism
of the incipient separation as induced by the shock wave/turbulent boundary
layer interactions at sharp fin is explained via the surface flow pattern
analysis. Furthermore, the reason for the observed discrepancy between the
predicted and experimental incipient separation conditions is clarified. It is
found that when the wall limiting streamlines behind the shock wave becomes\
aligning with one ray from the virtual origin as the strength of shock wave
increases, the incipient separation line is formed at which the wall limiting
streamline becomes perpendicular to the local pressure gradient. The formation
of this incipient separation line is the beginning of the separation process.
The effects of Reynolds number and the Mach number on incipient separation are
also discussed. Finally, a correlation for the correction of the incipient
separation angle as predicted by the theory is also given.Comment: 34 pages; 9 figure
Effect of Initial Disturbance on The Detonation Front Structure of a Narrow Duct
The effect of an initial disturbance on the detonation front structure in a
narrow duct is studied by three-dimensional numerical simulation. The numerical
method used includes a high resolution fifth-order weighted essentially
non-oscillatory scheme for spatial discretization, coupled with a third order
total variation diminishing Runge-Kutta time stepping method. Two types of
disturbances are used for the initial perturbation. One is a random disturbance
which is imposed on the whole area of the detonation front, and the other is a
symmetrical disturbance imposed within a band along the diagonal direction on
the front. The results show that the two types of disturbances lead to
different processes. For the random disturbance, the detonation front evolves
into a stable spinning detonation. For the symmetrical diagonal disturbance,
the detonation front displays a diagonal pattern at an early stage, but this
pattern is unstable. It breaks down after a short while and it finally evolves
into a spinning detonation. The spinning detonation structure ultimately formed
due to the two types of disturbances is the same. This means that spinning
detonation is the most stable mode for the simulated narrow duct. Therefore, in
a narrow duct, triggering a spinning detonation can be an effective way to
produce a stable detonation as well as to speed up the deflagration to
detonation transition process.Comment: 30 pages and 11 figure
Recommended from our members
The HadGEM2-ES implementation of CMIP5 centennial simulations
The scientific understanding of the Earth's climate system, including thecentral question of how the climate system is likely to respond tohuman-induced perturbations, is comprehensively captured in GCMs and EarthSystem Models (ESM). Diagnosing the simulated climate response, andcomparing responses across different models, is crucially dependent ontransparent assumptions of how the GCM/ESM has been driven - especiallybecause the implementation can involve subjective decisions and may differbetween modelling groups performing the same experiment. This paper outlinesthe climate forcings and setup of the Met Office Hadley Centre ESM, HadGEM2-ES for the CMIP5 set of centennial experiments. We document theprescribed greenhouse gas concentrations, aerosol precursors, stratosphericand tropospheric ozone assumptions, as well as implementation of land-usechange and natural forcings for the HadGEM2-ES historical and futureexperiments following the Representative Concentration Pathways. Inaddition, we provide details of how HadGEM2-ES ensemble members wereinitialised from the control run and how the palaeoclimate and AMIPexperiments, as well as the "emission-driven" RCP experiments wereperformed