3 research outputs found

    Use of a proteome strategy for tagging proteins present at the plasma membrane

    No full text
    A plasma membrane (PM) fraction was purified from Arabidopsis thaliana using a standard procedure and analyzed by two-dimensional (2D) gel electrophoresis. The proteins were classified according to their relative abundance in PM or cell membrane supernatant fractions. Eighty-two of the 700 spots detected on the PM 2D gels were microsequenced. More than half showed sequence similarity to proteins of known function. Of these, all the spots in the PM-specific and PM-enriched fractions, together with half of the spots with similar abundance in PM fraction and supernatant, have previously been found at the PM, supporting the validity of this approach. Extrapolation from this analysis indicates that (i) approximately 550 polypeptides found at the PM could be resolved on 2D gels; (ii) that numerous proteins with multiple locations are found at the PM; and (iii) that approximately 80% of PM-specific spots correspond to proteins with unknown function. Among the latter, half are represented by ESTs or cDNAs in databases. In this way, several unknown gene products were potentially localized to the PM. These data are discussed with respect to the efficiency of organelle proteome approaches to link systematically genomic data to genome expression. It is concluded that generalized proteomes can constitute a powerful resource, with future completion of Arabidopsis genome sequencing, for genome-wide exploration of plant function

    Cracking the Green Paradigm: Functional Coding of Phosphoinositide Signals in Plant Stress Responses

    No full text
    corecore