959 research outputs found
The effect of proton damage on the X-ray spectral response of MOS CCDs for the swift X-ray telescope
The effect of non-ionising energy loss(NIEL) of protons in charge-coupled devices is to displace silicon atoms and any dopant materials present from their lattice positions to form lattice defects which in turn can trap electrons [1]. A CCD operating as a photon counter for x-ray spectroscopy relies on the efficient transfer of charge from one region to another. The number of defects produced will reduce the charge transfer efficiency (CTE) and hence degrade the spectral resolution of the energy distribution of interest [2]. The Swift X-ray Telescope will be equipped with a single EPIC MOS CCD22 as developed for the XMM project [3]. It is the aim of this study to determine the effect of the radiation environment on the performance of the CCD and its impact on the scientific objective of the x-ray telescope, to probe the x-ray afterglow of Gamma Ray Bursts (GRBs)
Spectral function and quasiparticle weight in the generalized t-J model
We extend to the spectral function an approach which allowed us to calculate
the quasiparticle weight for destruction of a real electron Z_c sigma (k) (in
contrast to that of creation of a spinless holon Z_h(k) in a generalized
model, using the self-consistent Born approximation (SCBA). We compare our
results with those obtained using the alternative approach of Sushkov et al.,
which also uses the SCBA. The results for Z_c sigma (k) are also compared with
results obtained using the string picture and with exact diagonalizations of a
32-site square cluster. While on a qualitative level, all results look similar,
our SCBA approach seems to compare better with the ED one. The effect of
hopping beyond nearest neighbors, and that of the three-site term are
discussed.Comment: 7 pages, 6 figure
Multi-field continuum theory for medium with microscopic rotations
We derive the multi-field, micropolar-type continuum theory for the
two-dimensional model of crystal having finite-size particles. Continuum
theories are usually valid for waves with wavelength much larger than the size
of primitive cell of crystal. By comparison of the dispersion relations, it is
demonstrated that in contrast to the single-field continuum theory constructed
in our previous paper the multi-field generalization is valid not only for long
but also for short waves. We show that the multi-field model can be used to
describe spatially localized short- and long wavelength distortions. Short-wave
external fields of forces and torques can be also naturally taken into account
by the multi-field continuum theory.Comment: 14 pages, 4 figures, submitted to International Journal of Solids and
Structure
Superconducting gap in the presence of bilayer splitting in underdoped Bi(Pb)2212
The clearly resolved bilayer splitting in ARPES spectra of the underdoped
Pb-Bi2212 compound rises the question of how the bonding and antibonding sheets
of the Fermi surface are gapped in the superconducting state. Here we compare
the superconducting gaps for both split components and show that within the
experimental uncertainties they are identical. By tuning the relative intensity
of the bonding and antibonding bands using different excitation conditions we
determine the precise {\bf k}-dependence of the leading edge gap. Significant
deviations from the simple cos()-cos() gap function for the
studied doping level are detected.Comment: 5 pages, 4 figures (revtex4
Virtually abelian K\"ahler and projective groups
We characterise the virtually abelian groups which are fundamental groups of
compact K\"ahler manifolds and of smooth projective varieties. We show that a
virtually abelian group is K\"ahler if and only if it is projective. In
particular, this allows to describe the K\"ahler condition for such groups in
terms of integral symplectic representations
Atomic Dark Matter
We propose that dark matter is dominantly comprised of atomic bound states.
We build a simple model and map the parameter space that results in the early
universe formation of hydrogen-like dark atoms. We find that atomic dark matter
has interesting implications for cosmology as well as direct detection:
Protohalo formation can be suppressed below for weak scale dark matter due to Ion-Radiation interactions in the
dark sector. Moreover, weak-scale dark atoms can accommodate hyperfine
splittings of order 100 \kev, consistent with the inelastic dark matter
interpretation of the DAMA data while naturally evading direct detection
bounds.Comment: 17 pages, 3 figure
Interplay of structural and electronic phase separation in single crystalline La(2)CuO(4.05) studied by neutron and Raman scattering
We report a neutron and Raman scattering study of a single-crystal of
La(2)CuO(4.05) prepared by high temperature electrochemical oxidation. Elastic
neutron scattering measurements show the presence of two phases, corresponding
to the two edges of the first miscibility gap, all the way up to 300 K. An
additional oxygen redistribution, driven by electronic energies, is identified
at 250 K in Raman scattering (RS) experiments by the simultaneous onset of
two-phonon and two-magnon scattering, which are fingerprints of the insulating
phase. Elastic neutron scattering measurements show directly an
antiferromagnetic ordering below a N\'eel temperature of T_N =210K. The opening
of the superconducting gap manifests itself as a redistribution of electronic
Raman scattering below the superconducting transition temperature, T_c = 24K. A
pronounced temperature-dependent suppression of the intensity of the (100)
magnetic Bragg peak has been detected below T_c. We ascribe this phenomenon to
a change of relative volume fraction of superconducting and antiferromagnetic
phases with decreasing temperature caused by a form of a superconducting
proximity effect.Comment: 9 pages, including 9 eps figures, submitted to PR
and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties
(2212) single crystal samples
were studied using transmission electron microscopy (TEM), plane
() and axis () resistivity, and high resolution
angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that
the modulation in the axis for doped 2212 is dominantly
of type that is not sensitive to the oxygen content of the system, and the
system clearly shows a structure of orthorhombic symmetry. Oxygen annealed
samples exhibit a much lower axis resistivity and a resistivity minimum at
K. He-annealed samples exhibit a much higher axis resistivity and
behavior below 300K. The Fermi surface (FS) of oxygen annealed
2212 mapped out by ARUPS has a pocket in the FS around the
point and exhibits orthorhombic symmetry. There are flat, parallel sections of
the FS, about 60\% of the maximum possible along , and about 30\%
along . The wavevectors connecting the flat sections are about
along , and about along , rather than . The symmetry of the near-Fermi-energy dispersing
states in the normal state changes between oxygen-annealed and He-annealed
samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon
request. Submitted to Phys. Rev. B
Precision Pion-Proton Elastic Differential Cross Sections at Energies Spanning the Delta Resonance
A precision measurement of absolute pi+p and pi-p elastic differential cross
sections at incident pion laboratory kinetic energies from T_pi= 141.15 to
267.3 MeV is described. Data were obtained detecting the scattered pion and
recoil proton in coincidence at 12 laboratory pion angles from 55 to 155
degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm
measurements were also obtained for pi+p energies up to 218.1 MeV, with the
scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled,
super-cooled liquid hydrogen target as well as solid CH2 targets were used. The
data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5%
normalization. The reliability of the cross section results was ensured by
carrying out the measurements under a variety of experimental conditions to
identify and quantify the sources of instrumental uncertainty. Our lowest and
highest energy data are consistent with overlapping results from TRIUMF and
LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave
analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA
solution KH80 does not.Comment: 39 pages, 22 figures (some with quality reduced to satisfy ArXiv
requirements. Contact M.M. Pavan for originals). Submitted to Physical Review
The Self Model and the Conception of Biological Identity in Immunology
The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity
- âŠ