50,545 research outputs found

    Spin-triplet pairing in large nuclei

    Full text link
    The nuclear pairing condensate is expected to change character from spin-singlet to spin-triplet when the nucleus is very large and the neutron and proton numbers Z,NZ,N are equal. We investigate the transition between these two phases within the framework of the Hartree-Fock-Bogoliubov equations, using a zero-range interaction to generate the pairing. We confirm that extremely large nucleus would indeed favor triplet pairing condensates, with the Hamiltonian parameters taken from known systematics. The favored phase is found to depend on the specific orbitals at the Fermi energy. The smallest nuclei with a well-developed spin-triplet condensate are in the mass region A ~ 130-140.Comment: 8 pages, 2 figures, 2 table

    Intruder level and deformation in the SD-pair shell model

    Full text link
    The influence of the intruder level on nuclear deformation is studied within the framework of the nucleon-pair shell model truncated to an SD-pair subspace. The results suggest that the intruder level has a tendency to soften the deformation and plays an important role in determining the onset of rotational behavior.Comment: 2 input TeX files, 2 figures, submitted to Phys. Lett.

    Disordered Kondo Nanoclusters: Effect of Energy Spacing

    Full text link
    Exact diagonalization results for Kondo nanoclusters alloyed with mixed valence impurities show that tuning the {\it energy spacing}, Δ\Delta, drives the system from the Kondo to the RKKY regime. The interplay of Δ\Delta and disorder gives rise to a Δ\Delta versus concentration T=0 phase diagram very rich in structure, where regions with prevailing Kondo or RKKY correlations alternate with domains of ferromagnetic order. The local Kondo temperatures, TKT_K, and RKKY interactions depend strongly on the local environment and are overall {\it enhanced} by disorder, in contrast to the hypothesis of ``Kondo disorder'' single-impurity models.Comment: 4pages 4 figuresDisordered Kondo Nanoclusters: Effect of Energy Spacin

    Improved lattice QCD with quarks: the 2 dimensional case

    Get PDF
    QCD in two dimensions is investigated using the improved fermionic lattice Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved theory leads to a significant reduction of the finite lattice spacing errors. The quark condensate and the mass of lightest quark and anti-quark bound state in the strong coupling phase (different from t'Hooft phase) are computed. We find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures

    Comment on "Novel Convective Instabilities in a Magnetic Fluid"

    Full text link
    Comment on the paper "Novel Convective Instabilities in a Magnetic Fluid" by W. Luo, T. Du, and J. Huang, Phys. Rev. Lett., v.82, p.4134 (1999).Comment: 1 page, 1 figure, To appear in Phys. Rev. Lett. (2001

    Six-dimensional weak-strong simulations of head-on beam-beam compensation in RHIC

    Full text link
    To compensate the large beam-beam tune spread and beam-beam resonance driving terms in the polarized proton operation in the Relativistic Heavy Ion Collider (RHIC), we will introduce a low-energy DC electron beam into each ring to collide head-on with the opposing proton beam. The device to provide the electron beam is called an electron lens. In this article, using a 6-D weak-strong-beam-beam interaction simulation model, we investigate the effects of head-on beam-beam compensation with electron lenses on the proton beam dynamics in the RHIC 250 GeV polarized proton operation. This article is abridged from the published article [1].Comment: 5 pages, contribution to the ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders, CERN, Geneva, Switzerland, 18-22 Mar 201

    Ultraviolet/X-ray variability and the extended X-ray emission of the radio-loud broad absorption line quasar PG 1004+130

    Full text link
    We present the results of recent Chandra, XMM-Newton, and Hubble Space Telescope observations of the radio-loud (RL), broad absorption line (BAL) quasar PG 1004+130. We compare our new observations to archival X-ray and UV data, creating the most comprehensive, high signal-to-noise, multi-epoch, spectral monitoring campaign of a RL BAL quasar to date. We probe for variability of the X-ray absorption, the UV BAL, and the X-ray jet, on month-year timescales. The X-ray absorber has a low column density of NH=8×10204×1021N_{H}=8\times10^{20}-4\times10^{21} cm2^{-2} when it is assumed to be fully covering the X-ray emitting region, and its properties do not vary significantly between the 4 observations. This suggests the observed absorption is not related to the typical "shielding gas" commonly invoked in BAL quasar models, but is likely due to material further from the central black hole. In contrast, the CIV BAL shows strong variability. The equivalent width (EW) in 2014 is EW=11.24±\pm0.56 \AA, showing a fractional increase of ΔEW/EW\Delta EW / \langle EW \rangle=1.16±\pm0.11 from the 2003 observation, 3183 days earlier in the rest-frame. This places PG 1004+130 among the most highly variable BAL quasars. By combining Chandra observations we create an exposure 2.5 times deeper than studied previously, with which to investigate the nature of the X-ray jet and extended diffuse X-ray emission. An X-ray knot, likely with a synchrotron origin, is detected in the radio jet ~8 arcsec (30 kpc) from the central X-ray source with a spatial extent of ~4 arcsec (15 kpc). No similar X-ray counterpart to the counterjet is detected. Asymmetric, non-thermal diffuse X-ray emission, likely due to inverse Compton scattering of Cosmic Microwave Background photons, is also detected.Comment: 15 pages, 7 figures, 3 tables. Accepted for publication in Ap

    Metric adjusted skew information: Convexity and restricted forms of superadditivity

    Full text link
    We give a truly elementary proof of the convexity of metric adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric adjusted skew informations. Recently, Luo and Zhang introduced the notion of semi-quantum states on a bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew informations for such states. We extend this result to general metric adjusted skew informations. We finally show that a recently introduced extension to parameter values 1<p2 1<p\le 2 of the WYD-information is a special case of (unbounded) metric adjusted skew information.Comment: An error in the literature is pointed ou

    Inequalities for quantum skew information

    Full text link
    We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner-Yanase skew information is the maximal skew information with respect to this order structure in the set of Wigner-Yanase-Dyson skew informations. Key words and phrases: Quantum covariance, metric adjusted skew information, Robertson-type uncertainty principle, operator monotone function, Wigner-Yanase-Dyson skew information
    corecore