29,958 research outputs found

    On-chip III-V monolithic integration of heralded single photon sources and beamsplitters

    Full text link
    We demonstrate a monolithic III-V photonic circuit combining a heralded single photon source with a beamsplitter, at room temperature and telecom wavelength. Pulsed parametric down-conversion in an AlGaAs waveguide generates counterpropagating photons, one of which is used to herald the injection of its twin into the beamsplitter. We use this configuration to implement an integrated Hanbury-Brown and Twiss experiment, yielding a heralded second-order correlation gher(2)(0)=0.10±0.02g^{(2)}_{\rm her}(0)=0.10 \pm 0.02 that confirms single-photon operation. The demonstrated generation and manipulation of quantum states on a single III-V semiconductor chip opens promising avenues towards real-world applications in quantum information

    Hole Spin Coherence in a Ge/Si Heterostructure Nanowire

    Get PDF
    Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T20.18 μsT_2^* \sim 0.18~\mathrm{\mu s} exceeds corresponding measurements in III-V semiconductors by more than an order of magnitude, as expected for predominately nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaussian, previously seen in systems with nuclear-spin-dominated dephasing.Comment: 15 pages, 4 figure

    Study of isospin violating ϕ\phi excitation in e+eωπ0e^+e^- \to \omega\pi^0

    Full text link
    We study the reaction e+eωπ0e^+ e^-\to \omega\pi^0 in the vicinity of ϕ\phi mass region. The isospin-violating ϕ\phi excitation is accounted for by two major mechanisms. One is electromagnetic (EM) transition and the other is strong isospin violations. For the latter, we consider contributions from the intermediate hadronic meson loops and ϕ\phi-ρ0\rho^0 mixing as the major mechanisms via the tt and s-channel transitions, respectively. By fitting the recent KLOE data, we succeed in constraining the model parameters and extracting the ϕωπ0\phi\to\omega\pi^0 branching ratio. It shows that the branching ratio is sensitive to the ϕ\phi excitation line shape and background contributions. Some crucial insights into the correlation between isospin violation and Okubo-Zweig-Iizuka (OZI) rule evading transitions are also learned.Comment: Revised version to appear in J. Phys.

    Transient magnetoconductivity of photoexcited electrons

    Full text link
    Transient magnetotransport of two-dimensional electrons with partially-inverted distribution excited by an ultrashort optical pulse is studied theoretically. The time-dependent photoconductivity is calculated for GaAs-based quantum wells by taking into account the relaxation of electron distribution caused by non-elastic electron-phonon interaction and the retardation of the response due to momentum relaxation and due to a finite capacitance of the sample. We predict large-amplitude transient oscillations of the current density and Hall field (Hall oscillations) with frequencies corresponding to magnetoplasmon range, which are initiated by the instability owing to the absolute negative conductivity effect.Comment: 21 pages, 6 fig

    Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    Get PDF
    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak height distribution has its maximum away from zero at zero magnetic field, with an average that decreases with increasing field. Magnetoconductance in the open-wire regime places a bound on the spin-orbit length (lsol_{so} < 20 nm), consistent with values extracted in the Coulomb blockade regime (lsol_{so} < 25 nm).Comment: Supplementary Information available at http://bit.ly/19pMpd

    Running mass of the b-quark in QCD and SUSY QCD

    Full text link
    The running mass of the b-quark defined in DRbar-scheme is one of the important parameters of SUSY QCD. To find its value it should be related to some known experimental input. In this paper the b-quark running mass defined in nonsupersymmetric QCD is chosen for determination of corresponding parameter in SUSY QCD. The relation between these two quantities is found by considering five-flavor QCD as an effective theory obtained from its supersymmetric extension. A numerical analysis of the calculated two-loop relation and its impact on the MSSM spectrum is discussed. Since for nonsupersymmetric models MSbar-scheme is more natural than DRbar, we also propose a new procedure that allows one to calculate relations between MSbar- and DRbar-parameters. Unphysical epsilon-scalars that give rise to the difference between mentioned schemes are assumed to be heavy and decoupled in the same way as physical degrees of freedom. By means of this method it is possible to ``catch two rabbits'', i.e., decouple heavy particles and turn from DRbar to MSbar, at the same time. Explicit two-loop example of DRbar -> MSbar transition is given in the context of QCD. The advantages and disadvantages of the method are briefly discussed.Comment: 33 pages, 6 figures, 1 table, typos corrected, added references
    corecore