49,816 research outputs found

    Visual attitude orientation and alignment system

    Get PDF
    Active vehicle optical alignment aid and a passive vehicle three-dimensional alignment target ensure proper orientation and alignment plus control of the closure range and rate between two bodies, one in controlled motion and one at rest

    Variance Reduction For A Discrete Velocity Gas

    Get PDF
    We extend a variance reduction technique developed by Baker and Hadjiconstantinou [1] to a discrete velocity gas. In our previous work, the collision integral was evaluated by importance sampling of collision partners [2]. Significant computational effort may be wasted by evaluating the collision integral in regions where the flow is in equilibrium. In the current approach, substantial computational savings are obtained by only solving for the deviations from equilibrium. In the near continuum regime, the deviations from equilibrium are small and low noise evaluation of the collision integral can be achieved with very coarse statistical sampling. Spatially homogenous relaxation of the Bobylev-Krook-Wu distribution [3,4], was used as a test case to verify that the method predicts the correct evolution of a highly non-equilibrium distribution to equilibrium. When variance reduction is not used, the noise causes the entropy to undershoot, but the method with variance reduction matches the analytic curve for the same number of collisions. We then extend the work to travelling shock waves and compare the accuracy and computational savings of the variance reduction method to DSMC over Mach numbers ranging from 1.2 to 10.Aerospace Engineering and Engineering Mechanic

    Charged Vacuum Bubble Stability

    Get PDF
    A type of scenario is considered where electrically charged vacuum bubbles, formed from degenerate or nearly degenerate vacuua separated by a thin domain wall, are cosmologically produced due to the breaking of a discrete symmetry, with the bubble charge arising from fermions residing within the domain wall. Stability issues associated with wall tension, fermion gas, and Coulombic effects for such configurations are examined. The stability of a bubble depends upon parameters such as the symmetry breaking scale and the fermion coupling. A dominance of either the Fermi gas or the Coulomb contribution may be realized under certain conditions, depending upon parameter values.Comment: 16 pages,revtex; accepted for publication in Phys.Rev.

    Far Field Deposition Of Scoured Regolith Resulting From Lunar Landings

    Get PDF
    As a lunar lander approaches a dusty surface, the plume from the descent engine impinges on the ground, entraining loose regolith into a high velocity dust spray. Without the inhibition of a background atmosphere, the entrained regolith can travel many kilometers from the landing site. In this work, we simulate the flow field from the throat of the descent engine nozzle to where the dust grains impact the surface many kilometers away. The near field is either continuum or marginally rarefied and is simulated via a loosely coupled hybrid DSMC - Navier Stokes (DPLR) solver. Regions of two-phase and polydisperse granular flows are solved via DSMC. The far field deposition is obtained by using a staged calculation, where the first stages are in the near field where the flow is quasi-steady and the outer stages are unsteady. A realistic landing trajectory is approximated by a set of discrete hovering altitudes which range from 20m to 3m. The dust and gas motions are fully coupled using an interaction model that conserves mass, momentum, and energy statistically and inelastic collisions between dust particles are also accounted for. Simulations of a 4 engine configuration are also examined, and the erosion rates as well as near field particle fluxes are discussed.Astronom

    Properties of derivative expansion approximations to the renormalization group

    Get PDF
    Approximation only by derivative (or more generally momentum) expansions, combined with reparametrization invariance, turns the continuous renormalization group for quantum field theory into a set of partial differential equations which at fixed points become non-linear eigenvalue equations for the anomalous scaling dimension η\eta. We review how these equations provide a powerful and robust means of discovering and approximating non-perturbative continuum limits. Gauge fields are briefly discussed. Particular emphasis is placed on the r\^ole of reparametrization invariance, and the convergence of the derivative expansion is addressed.Comment: (Minor touch ups of the lingo.) Invited talk at RG96, Dubna, Russia; 14 pages including 2 eps figures; uses LaTeX, epsf and sprocl.st

    The City of Sydney 's Approach to the Supply of Affordable Housing

    Full text link
    The study examines the endeavours by the City of Sydney to increase the supply of affordable housin

    Electrically driven convection in a thin annular film undergoing circular Couette flow

    Full text link
    We investigate the linear stability of a thin, suspended, annular film of conducting fluid with a voltage difference applied between its inner and outer edges. For a sufficiently large voltage, such a film is unstable to radially-driven electroconvection due to charges which develop on its free surfaces. The film can also be subjected to a Couette shear by rotating its inner edge. This combination is experimentally realized using films of smectic A liquid crystals. In the absence of shear, the convective flow consists of a stationary, azimuthally one-dimensional pattern of symmetric, counter-rotating vortex pairs. When Couette flow is applied, an azimuthally traveling pattern results. When viewed in a co-rotating frame, the traveling pattern consists of pairs of asymmetric vortices. We calculate the neutral stability boundary for arbitrary radius ratio α\alpha and Reynolds number Re{{\cal R} e} of the shear flow, and obtain the critical control parameter Rc(α,Re){\cal R}_c (\alpha, {{\cal R} e}) and the critical azimuthal mode number mc(α,Re){m_c (\alpha, {{\cal R} e})}. The Couette flow suppresses the onset of electroconvection, so that Rc(α,Re)>Rc(α,0){\cal R}_c (\alpha, {{\cal R} e}) > {\cal R}_c (\alpha,0). The calculated suppression is compared with experiments performed at α=0.56\alpha = 0.56 and 0Re0.220 \leq {{\cal R} e} \leq 0.22 .Comment: 17 pages, 2 column with 9 included eps figures. See also http://mobydick.physics.utoronto.c
    corecore