5,537 research outputs found

    Calculating the global contribution of coralline algae to carbon burial

    Get PDF
    The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term time scales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological time scales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Organic and inorganic production were estimated at 330 g C m−2 yr−1 and 880 g CaCO3 m−2 yr−1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr−1. Calcium carbonate production by free-living/crustose coralline algae (CCA) corresponded to a sediment accretion of 70/450 mm kyr−1. Using this potential carbon storage by coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr−1 suggesting a total potential carbon sink of 1.6 × 109 t C yr−1. Coralline algae therefore have production rates similar to mangroves, saltmarshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store

    Cognitive triaging of phishing attacks

    Get PDF

    A macroscopic model for sessile droplet evaporation on a flat surface

    Get PDF
    The evaporation of sessile droplets on a flat surface involves a complex interplay between phase change, diffusion, advection and surface forces. In an attempt to significantly reduce the complexity of the problem and to make it manageable, we propose a simple model hinged on a surface free energy-based relaxation dynamics of the droplet shape, a diffusive evaporation model and a contact line pinning mechanism governed by a yield stress. Our model reproduces the known dynamics of droplet shape relaxation and of droplet evaporation, both in the absence and in the presence of contact line pinning. We show that shape relaxation during evaporation significantly affects the lifetime of a drop. We find that the dependence of the evaporation time on the initial contact angle is a function of the competition between the shape relaxation and evaporation, and is strongly affected by any contact line pinning.Comment: 13 pages, 8 figure

    A consistent treatment of link and writhe for open rods, and their relation to end rotation

    Get PDF
    We combine and extend the work of Alexander & Antman \cite{alexander.82} and Fuller \cite{fuller.71,fuller.78} to give a framework within which precise definitions can be given of topological and geometrical quantities characterising the contortion of open rods undergoing large deformations under end loading. We use these definitions to examine the extension of known results for closed rods to open rods. In particular, we formulate the analogue of the celebrated formula Lk=Tw+WrLk=Tw+Wr (link equals twist plus writhe) for open rods and propose an end rotation, through which the applied end moment does work, in the form of an integral over the length of the rod. The results serve to promote the variational analysis of boundary-value problems for rods undergoing large deformations.Comment: 17 pages, 4 figure

    Interval uneffectiveness distribution for a k-out-of-n multistate reliability system with repair

    Get PDF
    This paper deals with a parallel load-sharing reliability system with cold standby redundancy and ample repair facilities. That is, we have n identical parallel units, of which at most k units are operating simultaneously. If less than k units are available, the system operates at a proportionally reduced level. For this system, an approximate method is given for the calculation of the probability distribution of that proportion of the system capacity that cannot be used in a given time period. The method is based on an approximation of the k-out-of-n multistate system by a two-state single component. Validation of the approximation using Monte-Carlo simulation shows satisfactory performance. Also, sensitivity results are given, showing in particular a decreasing sensitivity of the measures of performance to the distributional form of the unit lifetimes and repair times as the size of the system increases. Furthermore, it is found that the effect of the distributional form of the unit lifetimes dominates that of the unit repair time

    A Reply to Verbeeck and Kearsley: Addressing the Challenges of Including lianas in Global Vegetation Models

    Get PDF
    Verbeeck and Kearsley (1) rightfully point out that global vegetation models would greatly benefit from implicitly including the effects of lianas. Recent experimental evidence that lianas substantially reduce the capacity of tropical forests to uptake and store carbon is compelling (2, 3). Furthermore, lianas are increasing relative to trees rapidly in many neotropical forests (4), which will further change the way that forests uptake, cycle, and store carbon

    Up-and-coming Radiotracers for Imaging Pain Generators

    Get PDF
    Chronic musculoskeletal pain is among the most highly prevalent diseases worldwide. Managing patients with chronic pain remains very challenging because current imaging techniques focus on morphological causes of pain that can be inaccurate and misleading. Moving away from anatomical constructs of disease, molecular imaging has emerged as a method to identify diseases according to their molecular, physiologic, or cellular signatures that can be applied to the variety of biomolecular changes that occur in nociception and pain processing and therefore have tremendous potential for precisely pinpointing the source of a patient's pain. Several molecular imaging approaches to image the painful process are now available, including imaging of voltage-gated sodium channels, calcium channels, hypermetabolic processes, the substance P receptor, the sigma-1 receptor, and imaging of macrophage trafficking. This article provides an overview of promising molecular imaging approaches for the imaging of musculoskeletal pain with a focus on preclinical methods.</p

    Up-and-coming Radiotracers for Imaging Pain Generators

    Get PDF
    Chronic musculoskeletal pain is among the most highly prevalent diseases worldwide. Managing patients with chronic pain remains very challenging because current imaging techniques focus on morphological causes of pain that can be inaccurate and misleading. Moving away from anatomical constructs of disease, molecular imaging has emerged as a method to identify diseases according to their molecular, physiologic, or cellular signatures that can be applied to the variety of biomolecular changes that occur in nociception and pain processing and therefore have tremendous potential for precisely pinpointing the source of a patient's pain. Several molecular imaging approaches to image the painful process are now available, including imaging of voltage-gated sodium channels, calcium channels, hypermetabolic processes, the substance P receptor, the sigma-1 receptor, and imaging of macrophage trafficking. This article provides an overview of promising molecular imaging approaches for the imaging of musculoskeletal pain with a focus on preclinical methods.</p
    • …
    corecore