594 research outputs found

    Mean-field dynamics of a non-Hermitian Bose-Hubbard dimer

    Full text link
    We investigate an NN-particle Bose-Hubbard dimer with an additional effective decay term in one of the sites. A mean-field approximation for this non-Hermitian many-particle system is derived, based on a coherent state approximation. The resulting nonlinear, non-Hermitian two-level dynamics, in particular the fixed point structures showing characteristic modifications of the self-trapping transition, are analyzed. The mean-field dynamics is found to be in reasonable agreement with the full many-particle evolution.Comment: 4 pages, 3 figures, published versio

    Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models and STIRAP

    Full text link
    We investigate the dynamics of a Bose--Einstein condensate (BEC) in a triple-well trap in a three-level approximation. The inter-atomic interactions are taken into account in a mean-field approximation (Gross-Pitaevskii equation), leading to a nonlinear three-level model. New eigenstates emerge due to the nonlinearity, depending on the system parameters. Adiabaticity breaks down if such a nonlinear eigenstate disappears when the parameters are varied. The dynamical implications of this loss of adiabaticity are analyzed for two important special cases: A three level Landau-Zener model and the STIRAP scheme. We discuss the emergence of looped levels for an equal-slope Landau-Zener model. The Zener tunneling probability does not tend to zero in the adiabatic limit and shows pronounced oscillations as a function of the velocity of the parameter variation. Furthermore we generalize the STIRAP scheme for adiabatic coherent population transfer between atomic states to the nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds the detuning.Comment: RevTex4, 7 pages, 11 figures, content extended and title/abstract change

    Run Generation Revisited: What Goes Up May or May Not Come Down

    Full text link
    In this paper, we revisit the classic problem of run generation. Run generation is the first phase of external-memory sorting, where the objective is to scan through the data, reorder elements using a small buffer of size M , and output runs (contiguously sorted chunks of elements) that are as long as possible. We develop algorithms for minimizing the total number of runs (or equivalently, maximizing the average run length) when the runs are allowed to be sorted or reverse sorted. We study the problem in the online setting, both with and without resource augmentation, and in the offline setting. (1) We analyze alternating-up-down replacement selection (runs alternate between sorted and reverse sorted), which was studied by Knuth as far back as 1963. We show that this simple policy is asymptotically optimal. Specifically, we show that alternating-up-down replacement selection is 2-competitive and no deterministic online algorithm can perform better. (2) We give online algorithms having smaller competitive ratios with resource augmentation. Specifically, we exhibit a deterministic algorithm that, when given a buffer of size 4M , is able to match or beat any optimal algorithm having a buffer of size M . Furthermore, we present a randomized online algorithm which is 7/4-competitive when given a buffer twice that of the optimal. (3) We demonstrate that performance can also be improved with a small amount of foresight. We give an algorithm, which is 3/2-competitive, with foreknowledge of the next 3M elements of the input stream. For the extreme case where all future elements are known, we design a PTAS for computing the optimal strategy a run generation algorithm must follow. (4) Finally, we present algorithms tailored for nearly sorted inputs which are guaranteed to have optimal solutions with sufficiently long runs

    From Cooperative Scans to Predictive Buffer Management

    Get PDF
    In analytical applications, database systems often need to sustain workloads with multiple concurrent scans hitting the same table. The Cooperative Scans (CScans) framework, which introduces an Active Buffer Manager (ABM) component into the database architecture, has been the most effective and elaborate response to this problem, and was initially developed in the X100 research prototype. We now report on the the experiences of integrating Cooperative Scans into its industrial-strength successor, the Vectorwise database product. During this implementation we invented a simpler optimization of concurrent scan buffer management, called Predictive Buffer Management (PBM). PBM is based on the observation that in a workload with long-running scans, the buffer manager has quite a bit of information on the workload in the immediate future, such that an approximation of the ideal OPT algorithm becomes feasible. In the evaluation on both synthetic benchmarks as well as a TPC-H throughput run we compare the benefits of naive buffer management (LRU) versus CScans, PBM and OPT; showing that PBM achieves benefits close to Cooperative Scans, while incurring much lower architectural impact.Comment: VLDB201

    Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates

    Get PDF
    We study the dynamical stability of the macroscopic quantum oscillations characterizing a system of three coupled Bose-Einstein condensates arranged into an open-chain geometry. The boson interaction, the hopping amplitude and the central-well relative depth are regarded as adjustable parameters. After deriving the stability diagrams of the system, we identify three mechanisms to realize the transition from an unstable to stable behavior and analyze specific configurations that, by suitably tuning the model parameters, give rise to macroscopic effects which are expected to be accessible to experimental observation. Also, we pinpoint a system regime that realizes a Josephson-junction-like effect. In this regime the system configuration do not depend on the model interaction parameters, and the population oscillation amplitude is related to the condensate-phase difference. This fact makes possible estimating the latter quantity, since the measure of the oscillating amplitudes is experimentally accessible.Comment: 25 pages, 12 figure

    Quantum tunneling as a classical anomaly

    Full text link
    Classical mechanics is a singular theory in that real-energy classical particles can never enter classically forbidden regions. However, if one regulates classical mechanics by allowing the energy E of a particle to be complex, the particle exhibits quantum-like behavior: Complex-energy classical particles can travel between classically allowed regions separated by potential barriers. When Im(E) -> 0, the classical tunneling probabilities persist. Hence, one can interpret quantum tunneling as an anomaly. A numerical comparison of complex classical tunneling probabilities with quantum tunneling probabilities leads to the conjecture that as ReE increases, complex classical tunneling probabilities approach the corresponding quantum probabilities. Thus, this work attempts to generalize the Bohr correspondence principle from classically allowed to classically forbidden regions.Comment: 12 pages, 7 figure

    Six-dimensional space-time from quaternionic quantum mechanics

    Get PDF
    Quaternionic quantum Hamiltonians describing nonrelativistic spin particles require the ambient physical space to have five dimensions. The quantum dynamics of a spin-1/2 particle system characterised by a generic such Hamiltonian is worked out in detail. It is shown that there exists, within the structure of quaternionic quantum mechanics, a canonical reduction to three spatial dimensions upon which standard quantum theory is retrieved. In this dimensional reduction, three of the five dynamical variables are shown to oscillate around a cylinder, thus behaving in a quasi one-dimensional manner at large distances. An analogous mechanism is shown to exist in the case of octavic Hamiltonians, where the ambient physical space has nine dimensions. Possible experimental tests in search for the signature of extra dimensions at low energies are briefly discussed.Comment: final version to appear in Phys. Rev.

    Long-range adiabatic quantum state transfer through a linear array of quantum dots

    Full text link
    We introduce an adiabatic long-range quantum communication proposal based on a quantum dot array. By adiabatically varying the external gate voltage applied on the system, the quantum information encoded in the electron can be transported from one end dot to another. We numerically solve the Schr\"odinger equation for a system with a given number of quantum dots. It is shown that this scheme is a simple and efficient protocol to coherently manipulate the population transfer under suitable gate pulses. The dependence of the energy gap and the transfer time on system parameters is analyzed and shown numerically. We also investigate the adiabatic passage in a more realistic system in the presence of inevitable fabrication imperfections. This method provides guidance for future realizations of adiabatic quantum state transfer in experiments.Comment: 7 pages, 7 figure

    The Adiabatic Transport of Bose-Einstein Condensates in a Double-Well Trap: Case a Small Nonlinearity

    Full text link
    A complete adiabatic transport of Bose-Einstein condensate in a double-well trap is investigated within the Landau-Zener (LZ) and Gaussian Landau-Zener (GLZ) schemes for the case of a small nonlinearity, when the atomic interaction is weaker than the coupling. The schemes use the constant (LZ) and time-dependent Gaussian (GLZ) couplings. The mean field calculations show that LZ and GLZ suggest essentially different transport dynamics. Significant deviations from the case of a strong coupling are discussed.Comment: 6 pages, 3 figures, to be published in Laser Physic

    Quantum catastrophes: a case study

    Full text link
    The bound-state spectrum of a Hamiltonian H is assumed real in a non-empty domain D of physical values of parameters. This means that for these parameters, H may be called crypto-Hermitian, i.e., made Hermitian via an {\it ad hoc} choice of the inner product in the physical Hilbert space of quantum bound states (i.e., via an {\it ad hoc} construction of the so called metric). The name of quantum catastrophe is then assigned to the N-tuple-exceptional-point crossing, i.e., to the scenario in which we leave domain D along such a path that at the boundary of D, an N-plet of bound state energies degenerates and, subsequently, complexifies. At any fixed N≥2N \geq 2, this process is simulated via an N by N benchmark effective matrix Hamiltonian H. Finally, it is being assigned such a closed-form metric which is made unique via an N-extrapolation-friendliness requirement.Comment: 23 p
    • …
    corecore