683 research outputs found
H-T Phase Diagram of Rare-Earth -- Transition Metal Alloy in the Vicinity of the Compensation Point
Anomalous hysteresis loops of ferrimagnetic amorphous alloys in high magnetic
field and in the vicinity of the compensation temperature have so far been
explained by sample inhomogeneities. We obtain H-T magnetic phase diagram for
ferrimagnetic GdFeCo alloy using a two-sublattice model in the paramagnetic
rare-earth ion approximation and taking into account rare-earth (Gd) magnetic
anisotropy. It is shown that if the magnetic anisotropy of the -sublattice
is larger than that of the -sublattice, the tricritical point can be at
higher temperature than the compensation point. The obtained phase diagram
explains the observed anomalous hysteresis loops as a result of high-field
magnetic phase transition, the order of which changes with temperature. It also
implies that in the vicinity of the magnetic compensation point the shape of
magnetic hysteresis loop is strongly temperature dependent.Comment: 8 pages, 3 figure
Selection Rules for All-Optical Magnetic Recording in Iron Garnet
Finding an electronic transition a subtle excitation of which can launch
dramatic changes of electric, optical or magnetic properties of media is one of
the long-standing dreams in the field of photo-induced phase transitions [1-5].
Therefore the discovery of the magnetization switching only by a femtosecond
laser pulse [6-10] triggered intense discussions about mechanisms responsible
for these laser-induced changes. Here we report the experimentally revealed
selection rules on polarization and wavelengths of ultrafast photo-magnetic
recording in Co-doped garnet film and identify the workspace of the parameters
(magnetic damping, wavelength and polarization of light) allowing this effect.
The all-optical magnetic switching under both single pulse and multiple-pulse
sequences can be achieved at room temperature, in narrow spectral ranges with
light polarized either along or crystallographic axes of the
garnet. The revealed selection rules indicate that the excitations responsible
for the coupling of light to spins are d-electron transitions in octahedral and
tetrahedral Co-sublattices, respectively
Extraordinary magnetooptical effects and transmission through the metal-dielectric plasmonic systems
We report on significant enhancement of the magnetooptical effects in
gyrotropic systems of a metallic film perforated by subwavelength hole arrays
and a uniform dielectric film magnetized perpendicular to its plane.
Calculations, based on a rigorous coupled-wave analysis, demonstrate the
Faraday and Kerr effect spectra having several resonance peaks in the near
infrared range, some of them coinciding with transmittance peaks. Qualitative
analysis revealed that magnetic polaritons being coupled magnetic-film
waveguiding modes with surface plasmons play a crucial role in the observed
effect.Comment: 10 pages, 3 figure
- …