26 research outputs found

    Dietary protein defines stress resistance, oxidative damages and antioxidant defense system in Drosophila melanogaster

    Get PDF
    Dietary interventions have been previously shown to influence lifespan in diverse model organisms. Manipulations with macronutrients content including protein and amino acids have a significant impact on various fitness and behavioral traits in the fruit fly Drosophila melanogaster. Therefore, we asked if yeast amount of the diet could influence stress resistance and antioxidant defense system in Drosophila. We examined the effects of four diets differing in the relative level of yeast, as a source of protein, on resistance to cold, heat, starvation and oxidative stress induced by menadione as well as activities of antioxidant enzymes and levels of oxidative stress markers. Protein restriction as well protein-enriched diet led to a reduction of survival under starvation and oxidative stress conditions. However, enhanced resistance to heat shock was affected by high yeast concentration in the diet. Also, protein-rich diets resulted in higher activity of antioxidant enzymes. Increased levels of protein thiols, low-molecule mass thiols, lipid peroxides in response to high yeast concentration in the diet were detected in females only. Thus, we can assume that consumption of a high protein diet could induce oxidative stress in fruit fly

    H2S biosynthesis and catabolism: new insights from molecular studies

    Get PDF
    Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissue

    Anise Hyssop Agastache foeniculum Increases Lifespan, Stress Resistance, and Metabolism by Affecting Free Radical Processes in Drosophila

    No full text
    Anise hyssop, Agastache foeniculum, is a widely used medicinal herb with known antioxidant properties. We studied how dietary supplementation with dried A. foeniculum leaf powder affected physiological and metabolic traits as well as activities of antioxidant enzymes and markers of oxidative stress in Drosophila melanogaster. Dietary hyssop extended the lifespan in a sex and genotype independent manner over a broad range of concentrations up to 30 mg/ml. Dietary supplementation with the herb significantly increased fecundity, resistance to oxidative stress and starvation. Higher transcript levels of Drosophila insulin-like peptide (dilp2) and decreased dilp3 and dilp6 transcripts together with increased levels of glycogen and triacylglycerols support an alteration of insulin signaling by the plant extract. Increased enzymatic activities of superoxide dismutase and aconitase as well as elevated protein and low molecular mass thiols also supported an alteration of free radical process in flies treated with dietary A. foeniculum leaf powder. Thus, physiological and metabolic traits as well as free radical processed may be affected by active compounds detected in extracts of anise hyssop leaves and contribute to the increased lifespan and reproductive (egg-laying) activity observed

    Evaluation of innovation activity of enterprises in Ukraine

    Get PDF
    In modern conditions, the main resource is knowledge and information and intellectual technologies that help to solve an issue of limited natural sources. The relevance of the article is that the evaluation of innovative activity of an enterprise plays a leading role in the characteristic of its operating. The purpose of the article is to consider innovative activity of Ukrainian enterprises. The article has considered the essence of innovative activity; notions of innovative products have been studied; approaches to analysis of innovative activity; the innovative activity of economic entities of the national economy has been reviewed

    Nanodelivery of phytobioactive compounds for treating aging-associated disorders

    No full text
    Aging population presents a major challenge for many countries in the world and has made the development of efficient means for healthspan extension a priority task for researchers and clinicians worldwide. Anti-aging properties including antioxidant, anti-inflammatory, anti-tumor, and cardioprotective activities have been reported for various phytobioactive compounds (PBCs) including resveratrol, quercetin, curcumin, catechin, etc. However, the therapeutic potential of orally administered PBCs is limited by their poor stability, bioavailability, and solubility in the gastrointestinal tract. Recently, innovative nanotechnology-based approaches have been developed to improve the bioactivity of PBCs and enhance their potential in preventing and/or treating age-associated disorders, primarily those caused by aging-related chronic inflammation. PBC-loaded nanoparticles designed for oral administration provide many benefits over conventional formulations, including enhanced stability and solubility, prolonged half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent advances in this rapidly developing research area
    corecore