411 research outputs found

    An improved Monte Carlo method for direct calculation of the density of states

    Full text link
    We present an efficient Monte Carlo algorithm for determining the density of states which is based on the statistics of transition probabilities between states. By measuring the infinite temperature transition probabilities--that is, the probabilities associated with move proposal only--we are able to extract excellent estimates of the density of states. When this estimator is used in conjunction with a Wang-Landau sampling scheme [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)], we quickly achieve uniform sampling of macrostates (e.g., energies) and systematically refine the calculated density of states. This approach requires only potential energy evaluations, continues to improve the statistical quality of its results as the simulation time is extended, and is applicable to both lattice and continuum systems. We test the algorithm on the Lennard-Jones liquid and demonstrate good statistical convergence properties.Comment: 7 pages, 4 figures. to appear in Journal of Chemical Physic

    On the Wang-Landau Method for Off-Lattice Simulations in the "Uniform" Ensemble

    Full text link
    We present a rigorous derivation for off-lattice implementations of the so-called "random-walk" algorithm recently introduced by Wang and Landau [PRL 86, 2050 (2001)]. Originally developed for discrete systems, the algorithm samples configurations according to their inverse density of states using Monte-Carlo moves; the estimate for the density of states is refined at each simulation step and is ultimately used to calculate thermodynamic properties. We present an implementation for atomic systems based on a rigorous separation of kinetic and configurational contributions to the density of states. By constructing a "uniform" ensemble for configurational degrees of freedom--in which all potential energies, volumes, and numbers of particles are equally probable--we establish a framework for the correct implementation of simulation acceptance criteria and calculation of thermodynamic averages in the continuum case. To demonstrate the generality of our approach, we perform sample calculations for the Lennard-Jones fluid using two implementation variants and in both cases find good agreement with established literature values for the vapor-liquid coexistence locus.Comment: 21 pages, 4 figure

    Crowding of Polymer Coils and Demixing in Nanoparticle-Polymer Mixtures

    Full text link
    The Asakura-Oosawa-Vrij (AOV) model of colloid-polymer mixtures idealizes nonadsorbing polymers as effective spheres that are fixed in size and impenetrable to hard particles. Real polymer coils, however, are intrinsically polydisperse in size (radius of gyration) and may be penetrated by smaller particles. Crowding by nanoparticles can affect the size distribution of polymer coils, thereby modifying effective depletion interactions and thermodynamic stability. To analyse the influence of crowding on polymer conformations and demixing phase behaviour, we adapt the AOV model to mixtures of nanoparticles and ideal, penetrable polymer coils that can vary in size. We perform Gibbs ensemble Monte Carlo simulations, including trial nanoparticle-polymer overlaps and variations in radius of gyration. Results are compared with predictions of free-volume theory. Simulation and theory consistently predict that ideal polymers are compressed by nanoparticles and that compressibility and penetrability stabilise nanoparticle-polymer mixtures.Comment: 18 pages, 4 figure

    Phase diagrams in the lattice RPM model: from order-disorder to gas-liquid phase transition

    Full text link
    The phase behavior of the lattice restricted primitive model (RPM) for ionic systems with additional short-range nearest neighbor (nn) repulsive interactions has been studied by grand canonical Monte Carlo simulations. We obtain a rich phase behavior as the nn strength is varied. In particular, the phase diagram is very similar to the continuum RPM model for high nn strength. Specifically, we have found both gas-liquid phase separation, with associated Ising critical point, and first-order liquid-solid transition. We discuss how the line of continuous order-disorder transitions present for the low nn strength changes into the continuum-space behavior as one increases the nn strength and compare our findings with recent theoretical results by Ciach and Stell [Phys. Rev. Lett. {\bf 91}, 060601 (2003)].Comment: 7 pages, 10 figure

    Universality class of criticality in the restricted primitive model electrolyte

    Full text link
    The 1:1 equisized hard-sphere electrolyte or restricted primitive model has been simulated via grand-canonical fine-discretization Monte Carlo. Newly devised unbiased finite-size extrapolation methods using temperature-density, (T, rho), loci of inflections, Q = ^2/ maxima, canonical and C_V criticality, yield estimates of (T_c, rho_c) to +- (0.04, 3)%. Extrapolated exponents and Q-ratio are (gamma, nu, Q_c) = [1.24(3), 0.63(3); 0.624(2)] which support Ising (n = 1) behavior with (1.23_9, 0.630_3; 0.623_6), but exclude classical, XY (n = 2), SAW (n = 0), and n = 1 criticality with potentials phi(r)>Phi/r^{4.9} when r \to \infty

    XY Spin Fluid in an External Magnetic Field

    Full text link
    A method of integral equations is developed to study inhomogeneous fluids with planar spins in an external field. As a result, the calculations for these systems appear to be no more difficult than those for ordinary homogeneous liquids. The approach proposed is applied to the ferromagnetic XY spin fluid in a magnetic field using a soft mean spherical closure and the Born-Green-Yvon equation. This provides an accurate reproduction of the complicated phase diagram behavior obtained by cumbersome Gibbs ensemble simulation and multiple histogram reweighting techniques.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Coexistence and Criticality in Size-Asymmetric Hard-Core Electrolytes

    Get PDF
    Liquid-vapor coexistence curves and critical parameters for hard-core 1:1 electrolyte models with diameter ratios lambda = sigma_{-}/\sigma_{+}=1 to 5.7 have been studied by fine-discretization Monte Carlo methods. Normalizing via the length scale sigma_{+-}=(sigma_{+} + sigma_{-})/2 relevant for the low densities in question, both Tc* (=kB Tc sigma_{+-}/q^2 and rhoc* (= rhoc sigma _{+-}^{3}) decrease rapidly (from ~ 0.05 to 0.03 and 0.08 to 0.04, respectively) as lambda increases. These trends, which unequivocally contradict current theories, are closely mirrored by results for tightly tethered dipolar dimers (with Tc* lower by ~ 0-11% and rhoc* greater by 37-12%).Comment: 4 pages, 5 figure

    Saddles in the energy landscape: extensivity and thermodynamic formalism

    Full text link
    We formally extend the energy landscape approach for the thermodynamics of liquids to account for saddle points. By considering the extensive nature of macroscopic potential energies, we derive the scaling behavior of saddles with system size, as well as several approximations for the properties of low-order saddles (i.e., those with only a few unstable directions). We then cast the canonical partition function in a saddle-explicit form and develop, for the first time, a rigorous energy landscape approach capable of reproducing trends observed in simulations, in particular the temperature dependence of the energy and fractional order of sampled saddles.Comment: 4 pages, 1 figur
    corecore