23 research outputs found

    Correlation between radiological assessment of acute ankle fractures and syndesmotic injury on MRI

    Get PDF
    Item does not contain fulltextOBJECTIVE: Owing to the shortcomings of clinical examination and radiographs, injury to the syndesmotic ligaments is often misdiagnosed. When there is no indication requiring that the fractured ankle be operated on, the syndesmosis is not tested intra-operatively, and rupture of this ligamentous complex may be missed. Subsequently the patient is not treated properly leading to chronic complaints such as instability, pain, and swelling. We evaluated three fracture classification methods and radiographic measurements with respect to syndesmotic injury. MATERIALS AND METHODS: Prospectively the radiographs of 51 consecutive ankle fractures were classified according to Weber, AO-M�ller, and Lauge-Hansen. Both the fracture type and additional measurements of the tibiofibular clear space (TFCS), tibiofibular overlap (TFO), medial clear space (MCS), and superior clear space (SCS) were used to assess syndesmotic injury. MRI, as standard of reference, was performed to evaluate the integrity of the distal tibiofibular syndesmosis. The sensitivity and specificity for detection of syndesmotic injury with radiography were compared to MRI. RESULTS: The Weber and AO-M�ller fracture classification system, in combination with additional measurements, detected syndesmotic injury with a sensitivity of 47\% and a specificity of 100\%, and Lauge-Hansen with both a sensitivity and a specificity of 92\%. TFCS and TFO did not correlate with syndesmotic injury, and a widened MCS did not correlate with deltoid ligament injury. CONCLUSION: Syndesmotic injury as predicted by the Lauge-Hansen fracture classification correlated well with MRI findings. With MRI the extent of syndesmotic injury and therefore fracture stage can be assessed more accurately compared to radiographs

    Costs and effectiveness of a brief MRI examination of patients with acute knee injury

    Get PDF
    The aim of this study was to assess the costs and effectiveness of selective short magnetic resonance imaging (MRI) in patients with acute knee injury. A model was developed to evaluate the selective use of MRI in patients with acute knee injury and no fracture on radiography based on the results of a trial in which 208 patients were randomized between radiography only and radiography plus MRI. We analyzed medical (diagnostic and therapeutic) costs, quality of life, duration of diagnostic workup, number of additional diagnostic examinations, time absent from work, and time to convalescence during a 6-month follow-up period. Quality of life was lowest (EuroQol at 6 weeks 0.61 (95% CI 0.54–0.67)); duration of diagnostic workup, absence from work, and time to convalescence were longest; and the number of diagnostic examinations was largest with radiography only. These outcomes were more favorable for both MRI strategies (EuroQol at 6 weeks 0.72 (95% CI 0.67–0.77) for both). Mean total costs were 2,593 euros (95% CI 1,815–3,372) with radiography only, 2,116 euros (95% CI 1,488–2,743) with radiography plus MRI, and 1,973 euros (95% CI 1,401–2,543) with selective MRI. The results suggest that selective use of a short MRI examination saves costs and potentially increases effectiveness in patients with acute knee injury without a fracture on radiography

    Tibiofibular syndesmosis in acute ankle fractures: additional value of an oblique MR image plane

    Get PDF
    Item does not contain fulltextOBJECTIVE: To evaluate the additional value of a 45� oblique MRI scan plane for assessing the anterior and posterior distal tibiofibular syndesmotic ligaments in patients with an acute ankle fracture. MATERIALS AND METHODS: Prospectively, data were collected for 44 consecutive patients with an acute ankle fracture who underwent a radiograph (AP, lateral, and mortise view) as well as an MRI in both the standard three orthogonal planes and in an additional 45� oblique plane. The fractures on the radiographs were classified according to Lauge-Hansen (LH). The anterior (ATIFL) and posterior (PTIFL) distal tibiofibular ligaments, as well as the presence of a bony avulsion in both the axial and oblique planes was evaluated on MRI. MRI findings regarding syndesmotic injury in the axial and oblique planes were compared to syndesmotic injury predicted by LH. Kappa and the agreement score were calculated to determine the interobserver agreement. The Wilcoxon signed rank test and McNemar's test were used to compare the two scan planes. RESULTS: The interobserver agreement (?) and agreement score [AS (\%)] regarding injury of the ATIFL and PTIFL and the presence of a fibular or tibial avulsion fracture were good to excellent in both the axial and oblique image planes (? 0.61-0.92, AS 84-95\%). For both ligaments the oblique image plane indicated significantly less injury than the axial plane (p?<?0.001). There was no significant difference in detection of an avulsion fracture in the axial or oblique plane, neither anteriorly (p?=?0.50) nor posteriorly (p?=?1.00). With syndesmotic injury as predicted by LH as comparison, the specificity in the oblique MR plane increased for both anterior (to 86\% from 7\%) and posterior (to 86\% from 48\%) syndesmotic injury when compared to the axial plane. CONCLUSION: Our results show the additional value of an 45� oblique MR image plane for detection of injury of the anterior and posterior distal tibiofibular syndesmoses in acute ankle fractures. Findings of syndesmotic injury in the oblique MRI plane were closer to the diagnosis as assumed by the Lauge-Hansen classification than in the axial plane. With more accurate information, the surgeon can better decide when to stabilize syndesmotic injury in acute ankle fractures

    Demographics of extra-articular calcaneal fractures: Including a review of the literature on treatment and outcome

    Get PDF
    Introduction: Extra-articular calcaneal fractures represent 25-40% of all calcaneal fractures and an even higher percentage of up to 60% is seen in children. A disproportionately small part of the literature on calcaneal fractures involves the extra-articular type. The aim of this study was to investigate the incidence of extra-articular calcaneal fractures in a Level 1 trauma centre, define the distribution of the various types of fractures and compare patient demographics between extra- and intra-articular calcaneal fractures. In addition the literature was reviewed for the most common types of extra-articular calcaneal fractures with regard to incidence, treatment and clinical outcome. Methods: The radiological records between 2003 and 2005 were reviewed for intra- and extra-articular calcaneal fractures. Patient gender-distribution and age were compared. A literature search was conducted for the treatment of extra-articular calcaneal fractures. Results: In this 3-year study period a total of 49 patients with 50 extra-articular calcaneal fractures and 91 patients with 101 intra-articular fractures were identified. The median age for the first group was 32.7 years, and for the second group 40.3 years; P = 0.04. Male predominance was significantly less pronounced for extra-articular (63%) compared with intra-articular fractures (79%; P = 0.04). Conclusion: One-third of all calcaneal fractures are extra-articular. Significant differences exist between the intra- and extra-articular groups, in terms of lower age and male-female ratio. The literature study shows inconsistencies in treatment options, but most extra-articular fractures are well manageable conservatively

    Sonography for hip joint effusion in adults with hip pain

    No full text
    To study the prevalence of ultrasonic hip joint effusion and its relation with clinical, radiological and laboratory (ESR) findings in adults with hip pain. Patients (n = 224) aged 50 years or older with hip pain, referred by the general practitioner for radiological investigation, underwent a standardised examination. The distance between the ventral capsule and the femoral neck, an increase in which represents joint effusion, was measured sonographically. Joint effusion was defined in three different ways: "effusion" according to Koski's definition, "major effusion", and "asymmetrical effusion" based on only individual side differences. "Effusion" was present in 80 (38%), "major effusion" in 20 (9%), and "asymmetrical effusion" in 47 (22%) patients. Pain in the groin or medial thigh, pain aggravated by lying on the side, decreased extension/internal rotation/abduction/flexion, painful external rotation, and pain on palpation in the groin showed a significant relation (adjusted for age and radiological osteoarthritis of the hip) with ultrasonic hip joint effusion. "Major effusion" showed a significant relation with an increased ESR. When patients with bilateral pain and increased ESR were excluded, a side difference in the range of motion of extension of the hip was shown to be a good predictor for "asymmetrical effusion" (positive predictive value: 71%, negative predictive value: 80%). This study showed a relatively high prevalence of ultrasonic joint effusion in adults with hip pain in general practice. Furthermore the results indicate a relation between joint effusion and clinical sign

    Radiographic measurement of the distal tibiofibular syndesmosis has limited use

    No full text
    Radiographs of 20 plastinated human cadaveric lower legs were obtained in 12 positions of rotation to determine the optimal parameter for reliable assessment of syndesmotic and ankle integrity, and to assess the effect of positioning of the ankle on this parameter. Three observers measured eight parameters twice after four repetitions of ankle positioning. Intraclass correlation coefficients and reproducibility were assessed. Some tibioribular overlap was present in all radiographs in any position of rotation. The medial clear space was smaller than or equal to the superior clear space in all radiographs. Intraclass correlation coefficients of the other parameters were too weak for reliable quantitative measurements, as was shown with a mixed model analysis of variance. This resulted from the inability to reproduce ankle positioning, even under optimal laboratory circumstances. This study shows that no optimal radiographic parameter exists to assess syndesmotic integrity. Tibiofibular overlap and medial and superior clear space are the most useful, because one-sided traumatic absence of tibiofibular overlap may be an indication of syndesmotic injury, and a medial clear space larger than a superior clear space is indicative of deltoid injury. Additional quantitative measurement of all syndesmotic parameters with repeated radiographs of the ankle cannot be done reliably and therefore are of little value

    Correlation between radiological assessment of acute ankle fractures and syndesmotic injury on MRI

    No full text
    Objective: Owing to the shortcomings of clinical examination and radiographs, injury to the syndesmotic ligaments is often misdiagnosed. When there is no indication requiring that the fractured ankle be operated on, the syndesmosis is not tested intra-operatively, and rupture of this ligamentous complex may be missed. Subsequently the patient is not treated properly leading to chronic complaints such as instability, pain, and swelling. We evaluated three fracture classification methods and radiographic measurements with respect to syndesmotic injury. Materials and methods: Prospectively the radiographs of 51 consecutive ankle fractures were classified according to Weber, AO-Müller, and Lauge-Hansen. Both the fracture type and additional measurements of the tibiofibular clear space (TFCS), tibiofibular overlap (TFO), medial clear space (MCS), and superior clear space (SCS) were used to assess syndesmotic injury. MRI, as standard of reference, was performed to evaluate the integrity of the distal tibiofibular syndesmosis. The sensitivity and specificity for detection of syndesmotic injury with radiography were compared to MRI. Results: The Weber and AO-Müller fracture classification system, in combination with additional measurements, detected syndesmotic injury with a sensitivity of 47% and a specificity of 100%, and Lauge-Hansen with both a sensitivity and a specificity of 92%. TFCS and TFO did not correlate with syndesmotic injury, and a widened MCS did not correlate with deltoid ligament injury. Conclusion: Syndesmotic injury as predicted by the Lauge-Hansen fracture classification correlated well with MRI findings. With MRI the extent of syndesmotic injury and therefore fracture stage can be assessed more accurately compared to radiographs

    Effects of ligament sectioning on the kinematics of the distal tibiofibular syndesmosis: A radiostereometric study of 10 cadaveric specimens based on presumed trauma mechanisms with suggestions for treatment

    No full text
    Background: Syndesmotic injuries of the ankle without fractures can result from external rotation, abduction and dorsiflexion injuries. Kinematic studies of these trauma mechanisms have not been performed. We attempted to describe the kinematics of the tibiofibular joint in cadaveric specimens using radiostereometry after sequential ligament sectioning, and resulting from different trauma mechanisms and axial loading, in order to put forward treatment guidelines for the different types of syndesmotic injuries. Methods: We assessed the kinematics of the distal tibiofibular joint in fresh-frozen cadaveric specimens using radiostereometry in the intact situation, and after alternating and sequential sectioning of the distal tibiofibular and anterior deltoid ligaments. To assess which of the known trauma mechanisms would create the largest displacements at the syndesmosis, the ankle was brought into the following positions under an axial load that was comparable to body weight (750 N): neutral, dorsiflexion, external rotation, abduction, and a combination of external rotation and abduction. Results: In the neutral position, the largest displacements of the fibula consisted of external rotation and posterior translation. Loading of the ankle with 750 N did not apparently increase or decrease the displacements of the fibula, but gave a larger variety of displacements. In every position, sectioning of a ligament resulted in some fibular displacement. Sectioning of the anterior tibiofibular ligament (ATiFL) invariably resulted in external rotation of the fibula. Additional sectioning of the anterior part of the deltoid ligament (AD) gave a larger variety of displacements. In general, sectioning of the posterior tibiofibular ligament (PTiFL) gave the smallest displacements. Combined sectioning of the ATiFL and the PTiFL resulted in a larger variety of displacements in the neutral position. Sectioning of the AD together with the ATiFL and PTiFL resulted in tibiofibular displacements in the neutral situation exceeding the maximum values found in the intact situation, the most important being fibular external rotation. Interpretation: Sectioning of the ATiFL results in mechanical instability of the syndesmosis. Of all trauma mechanisms, external rotation of the ankle resulted in the largest and most consistent displacements of the fibula relative to the tibia found at the syndesmosis. Based on our findings and the current literature, we recommend that patients with isolated PTiFL or AD injuries should be treated functionally when no other injuries are present. Patients with acute complete ATiFL ruptures, or combined ATiFL and AD ruptures should be treated with immobilization in a plaster. Patients with combined ruptures of the ATiFL, AD and PTiFL need to be treated with a syndesmotic screw. Copyrigh
    corecore