1,898 research outputs found

    Number of distinct sites visited by N random walkers on a Euclidean lattice

    Full text link
    The evaluation of the average number S_N(t) of distinct sites visited up to time t by N independent random walkers all starting from the same origin on an Euclidean lattice is addressed. We find that, for the nontrivial time regime and for large N, S_N(t) \approx \hat S_N(t) (1-\Delta), where \hat S_N(t) is the volume of a hypersphere of radius (4Dt \ln N)^{1/2}, \Delta={1/2}\sum_{n=1}^\infty \ln^{-n} N \sum_{m=0}^n s_m^{(n)} \ln^{m} \ln N, d is the dimension of the lattice, and the coefficients s_m^{(n)} depend on the dimension and time. The first three terms of these series are calculated explicitly and the resulting expressions are compared with other approximations and with simulation results for dimensions 1, 2, and 3. Some implications of these results on the geometry of the set of visited sites are discussed.Comment: 15 pages (RevTex), 4 figures (eps); to appear in Phys. Rev.

    Survival probability and order statistics of diffusion on disordered media

    Full text link
    We investigate the first passage time t_{j,N} to a given chemical or Euclidean distance of the first j of a set of N>>1 independent random walkers all initially placed on a site of a disordered medium. To solve this order-statistics problem we assume that, for short times, the survival probability (the probability that a single random walker is not absorbed by a hyperspherical surface during some time interval) decays for disordered media in the same way as for Euclidean and some class of deterministic fractal lattices. This conjecture is checked by simulation on the incipient percolation aggregate embedded in two dimensions. Arbitrary moments of t_{j,N} are expressed in terms of an asymptotic series in powers of 1/ln N which is formally identical to those found for Euclidean and (some class of) deterministic fractal lattices. The agreement of the asymptotic expressions with simulation results for the two-dimensional percolation aggregate is good when the boundary is defined in terms of the chemical distance. The agreement worsens slightly when the Euclidean distance is used.Comment: 8 pages including 9 figure

    Entanglement scaling at first order phase transitions

    Get PDF
    First order quantum phase transitions (1QPTs) are signaled, in the thermodynamic limit, by discontinuous changes in the ground state properties. These discontinuities affect expectation values of observables, including spatial correlations. When a 1QPT is crossed in the vicinity of a second order one (2QPT), due to the correlation length divergence of the latter, the corresponding ground state is modified and it becomes increasingly difficult to determine the order of the transition when the size of the system is finite. Here we show that, in such situations, it is possible to apply finite size scaling to entanglement measures, as it has recently been done for the order parameters and the energy gap, in order to recover the correct thermodynamic limit. Such a finite size scaling can unambigously discriminate between first and second order phase transitions in the vicinity of multricritical points even when the singularities displayed by entanglement measures lead to controversial results

    Simple equation of state for hard disks on the hyperbolic plane

    Full text link
    A simple equation of state for hard disks on the hyperbolic plane is proposed. It yields the exact second virial coefficient and contains a pole at the highest possible packing. A comparison with another very recent theoretical proposal and simulation data is presented.Comment: 3 pages, 1 figur

    The subdiffusive target problem: Survival probability

    Full text link
    The asymptotic survival probability of a spherical target in the presence of a single subdiffusive trap or surrounded by a sea of subdiffusive traps in a continuous Euclidean medium is calculated. In one and two dimensions the survival probability of the target in the presence of a single trap decays to zero as a power law and as a power law with logarithmic correction, respectively. The target is thus reached with certainty, but it takes the trap an infinite time on average to do so. In three dimensions a single trap may never reach the target and so the survival probability is finite and, in fact, does not depend on whether the traps move diffusively or subdiffusively. When the target is surrounded by a sea of traps, on the other hand, its survival probability decays as a stretched exponential in all dimensions (with a logarithmic correction in the exponent for d=2d=2). A trap will therefore reach the target with certainty, and will do so in a finite time. These results may be directly related to enzyme binding kinetics on DNA in the crowded cellular environment.Comment: 6 pages. References added, improved account of previous results and typos correcte

    On the radial distribution function of a hard-sphere fluid

    Full text link
    Two related approaches, one fairly recent [A. Trokhymchuk et al., J. Chem. Phys. 123, 024501 (2005)] and the other one introduced fifteen years ago [S. B. Yuste and A. Santos, Phys. Rev. A 43, 5418 (1991)], for the derivation of analytical forms of the radial distribution function of a fluid of hard spheres are compared. While they share similar starting philosophy, the first one involves the determination of eleven parameters while the second is a simple extension of the solution of the Percus-Yevick equation. It is found that the {second} approach has a better global accuracy and the further asset of counting already with a successful generalization to mixtures of hard spheres and other related systems.Comment: 3 pages, 1 figure; v2: slightly shortened, figure changed, to be published in JC
    • …
    corecore