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Abstract
First order quantumphase transitions (1QPTs) are signalled, in the thermodynamic limit, by
discontinuous changes in the ground state properties. These discontinuities affect expectation values
of observables, including spatial correlations.When a 1QPT is crossed in the vicinity of a second order
one, due to the correlation length divergence of the latter, the corresponding ground state ismodified
and it becomes increasingly difficult to determine the order of the transitionwhen the size of the
system isfinite. Herewe show that, in such situations, it is possible to applyfinite size scaling (FSS) to
entanglementmeasures, as it has recently been done for the order parameters and the energy gap, in
order to recover the correct thermodynamic limit (Campostrini et al 2014Phys. Rev. Lett. 113 070402).
Such a FSS can unambiguously discriminate betweenfirst and second order phase transitions in the
vicinity ofmulticritical points evenwhen the singularities displayed by entanglementmeasures lead to
controversial results.

1. Introduction

Understanding howmany-body interacting systems order into different quantumphases as well as the
transitions between them remains one of themost challenging open problems inmodern physics. Quantum
phase transitions (QPTs) are associatedwith the non-analytical behavior of some observable and/or correlator
which can be either local or non local.With the discovery of topological and new exotic phases [1], which fall
outside Landau’s symmetry breaking paradigm, the use of entanglement to describe quantummatter seems to
be, by allmeans, necessary [2].

Here, we restrict ourselves to study entanglement behavior for a large class of QPTswhich, in analogy to their
classical counterparts, are signaled by singularities in the derivatives of the (free) energy [3]. In such cases, phase
transitions are classified by theminimumorder of the derivative of the ground state energywhich is not
continuous. Accordingly, first (1QPTs) and second (2QPTs) orderQPTs show singular behavior on thefirst and
second derivative of the ground state energy respectively. For 1QPTs, the singular behavior translates into abrupt
discontinuities of some local observables while for 2QPTs the order parameters change continuously with a
power law. In this last case, the thermodynamic limit can be recovered using finite size scaling (FSS) [4]. The
scaling is characterized by the critical exponents allowing the classification of apparently different 2QPTs into
the same universality class.With such definitions at hand it looks straightforward to distinguish if a givenQPT is
offirst or second order. But this is not always the case when finite size effects are present. This question becomes
especially relevant in the vicinity ofmulticritical points where several QPTs of different order coexist in a narrow
range ofHamiltonian parameters.

First studies of the entanglement behavior close to aQPTwereperformedby analyzing bipartite entanglement
in simple spinmodels like thequantumIsing spin-1/2 chainwhich exhibits a 2QPT. In [5, 6], the authors showed
that, similarly to the ground state energybehavior, the bipartite entanglement between two adjacent spins, as
measured by the concurrence,  , has a derivativewhich diverges at the critical point in the thermodynamical limit.
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Moreover, they showed that, forfinite size systems, a FSS can beperformed allowing the correct extractionof the
critical exponents corresponding to the Ising transition. Since then, a large amount ofworkhas beendevoted to
deepen the connections between quantum information andQPTs, see for instance [7–17].

In [18], the above results were generalized by usingKohn–Sham theoremwhich links ground state
properties with reduced densitymatrices. ForN-partite localHamiltonians that contain atmost k-body
interactions, l l= åˆ ( ) ˆ ( )H Hk k , whereλ is a parameter in theHamiltonian phase-space, such as the
magnetization or an interaction strength. The energy of the ground state Y ñ∣ 0 can bewritten as

ål r= áY Y ñ =( ) ∣ ˆ ∣ ( ˆ ) ( )E H HTr , 1
k

k
k

0 0 0

where ρ k is the reduced densitymatrix acting on the local support of the corresponding localHamiltonian Ĥk.
For the usual case of localHamiltonianswith just two-body interactions, l l=ˆ ( ) ˆ ( )H Hk ij , where the indexes i

and j refer to two spins, it can be shown that r¶ ~ ¶l l( ˆ )E Hij
ij

0 . If the localHamiltonians are smooth functions
ofλ, then a one-to-one correspondence can bemade between the singularities of∂λE0(λ) arising in a 1QPT and
the singularities of (thematrix elements of) ρ ij. The above translates into discontinuous pairwise entanglement
measures, which depend exclusively on ρ ij. By the same reasoning, a singularity in ¶lE2

0, typical of a 2QPT, is
associated to a singularity in the first derivative of the corresponding pairwise entanglementmeasure.

A theorem casting all the above results is stated in [18] claiming that, unless there exist accidental
divergences, the order and properties ofQPTs of localHamiltonians are signalled by the entanglementmeasures
associated to the corresponding reduced densitymatrix of the ground state. The theoremworks in both
directions, i.e. a discontinuity in a pairwisemeasure of entanglement in a 2-localHamiltonian indicates a 1QPT
while a discontinuity/divergence in its derivative signals a 2QPT. The above theoremhas some known caveats.
For instance, in the spin-1/2XXZ chain, at the 1QPTbetween the ferromagnetic and critical phase, the
concurrence is a function of the energy at the critical point and it remains continuous in the thermodynamic
limit while its first derivative is discontinuous [19, 20]. For the same transition, it has been shown that a
symmetry breaking in the ferromagnetic phase alsomodifies the origin of the non-analytic behavior of the
concurrence [21]. In [22], a three-body localHamiltonianmodel was presented inwhich the pairwise
concurrence is non analytical in the absence of anyQPT [22]. For 2Dmodels even less is known.

Motivated by the above results, we analyze here scaling properties of pairwise entanglementmeasures for
2-localHamiltonians nearmulticritical points. Although FSS is a tool to obtain the thermodynamical properties
of the system for continuous (2QPT) phase transitions, herewe show that such a tool can be employed also for
entanglementmeasures for 1QPTs. Further, we demonstrate that when finite size effects are important, it is
precisely the scaling of the entanglementmeasure and not themeasure itself which determines the correct order
of the transition. This fact is especially relevant for a 1QPT crossed in the vicinity of a 2QPT and it is in
accordancewith the recent results reported byCampostrini and coauthors [23] showing that the order
parameter of a 1QPT can be continuous forfinite systems and admits an appropriate FSS.

The paper is organized as follows. In section 2, we focus on the spin-1/2 Ising chainwith longitudinal field
and report how bipartite entanglement, asmeasured by e.g. the concurrence, scales in the 1QPTwhen is crossed
near themulticritical point. This choice ismotivated by the fact that this is an integrablemodel when the
longitudinal field vanishes and serves as a playtool to analyze numerical results. In section 3, wemove to amuch
more complexmodel, the spin-1XXZ chainwith uniaxial single-ion anisotropy. The phase diagramof the
model is rich and has several QPTswhose boundaries are only known approximately.We focus on the 1QPTof
themodel and analyze bymeans of numerical techniques the behavior of bipartite entanglement in the vicinity
ofmulticritical points. In section 4, we discuss the results and, finally, in section 5we conclude.

2. Spin-1/2 Ising chainwith longitudinalfield

Thefirst spinmodel we explore is the spin-1/2 Ising chainwith a longitudinal field,

å å ås s s s= - - -
=

-

+
= =

ˆ ˆ ˆ ˆ ˆ ( )H J B B , 2
i

L

i
x

i
x

z
i

L

i
z

x
i

L

i
x

1

1

1
1 1

where L is the number of spins, saˆ i are the Paulimatrices for spin i andwe set J=1 and B 0z . Infigure 1, we
provide the phase diagramof themodel. ForBx= 0, where the system reduces to the integrable Isingmodel,
there is a 2QPT atBz= 1 between the ferromagnetic (Bz<1) and paramagnetic phases (Bz>1). This 2QPTwas
thefirst one studied bymeans of bipartite entanglement [5].When ¹B 0x , the system is no longer integrable
andwe obtain the ground state of the systemusing both, the densitymatrix renormalization group (DMRG)
with open boundary conditions (OBCs) [24–26] and exact diagonalization (ED) calculations.When the system
is in the ferromagnetic phase, a 1QPT takes place atBx= 0 between the two ferromagnetic ground states,
ferromagnetic  and ferromagnetic . This transition can be detected by a discontinuity in themagnetization,
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s= å á ñˆMx i i
x , which passes frompositive to negative values.However, forfinite systems, numerical calculations

in a region sufficiently close toBx= 0 show a smooth slope inMx instead of a discontinuity. To deal with this
effect, in [23] a FSS is proposed forfirst order quantum transitions in a chain of size L driven by amagnetic field
h. There, on dimensional grounds, it is argued that around the critical point (h=0), if there is scaling behavior,
the relevant scaling variable,κ, should correspond to the ratio between the energy contribution of h, and the gap
at the critical point,D = D =( )L h, 0L L ,

k ~
D

( )hL
. 3

L

As a result, heuristically when ~ DhL L, the ground state energy becomes effectively continuous along the
transition and so does the order parameter. This feature becomesmore relevant the closer the critical point is to a
2QPT, since the correlation length of the system (ξ) diverges, enhancing the nearbyfinite size effects. In [23], it is
shown that across the 1QPTof the longitudinal Ising chain (equation (2)) occurring atBx= 0, thefirst energy
gap and themagnetization obey the following scaling ansatz:

kD » D D( ) ( ) ( )L B f, , 4x L

k»( ) ( ) ( )M L B m f, , 5x x M0

where fΔ(κ) and fM(κ) are continuousuniversal functions for allL andBz. Since themodel is integrable forBx=0, the
scaling variable canbedefined as [23]

k =
D

( )m B L2
, 6x

L
1

0

whereD = D » -= ( )B B2 1L L B z z
L

, 0
2

x
, is thefirst gap at the critical point,Bx= 0 forOBC and

s= á ñ = -
 ¥+

ˆ ( ) ( )m Blim lim 1 . 7
B L

x z0
0

2 1 8

x

Clearly, as one approaches the critical point,Bx= 0, in the nearby region of the 2QPT (Bz= 1), the gap closes and
even at very small values of the driving parameterBx around the critical point, the 1QPT transition looks
continuous. Here, we apply the above scaling concepts to the entanglement across the 1QPT transition. Since the
Hamiltonian is 2-local, discontinuities in entanglementmeasures have to be related to two-body (pairwise)
entanglement of twonearest-neighbor spins (i, j) described by the reduced densitymatrix, ρ ij. For pure states, all
measures of bipartite entanglement are in one-to-one correspondence and are all a function of the eigenvalues of
the reduced densitymatrix arising from the chosen partition. Formixed states, this is not the case anymore and
the entanglementmeasure has to be calculated as the convex roof of the corresponding pure statemeasure. An
exception formixed states ρ of two spin-1/2 particles or qubits, is the concurrence [27]which is equivalent to the
entanglement cost and has a closed analytical expression:

 r l l l l= - - -( ) ( ) ( )max 0, , 81 2 3 4

whereλi are the eigenvalues, in decreasing order, of thematrix rr r= ˜R with *r s s r s s= Ä Ä˜ ( ˆ ˆ ) ( ˆ ˆ )y y y y ,
where the product s sÄˆ ˆy y is defined in theHilbert space of the two spins and ρ* is the complex conjugate of ρ.
Since  is supposed to be discontinuous at the critical point for 1QPTs, naively wemight expect that it will follow
a similar scaling behavior asMx, equation (5). Infigure 2, we show  for the two central spins which, if border
effects are neglected, will also hold for the rest of neighboring spin pairs. In the left panel, we observe that  is a
continuous functionwith a spike at the critical point which signals a singularity in the first derivative, ¶Bx . The

Figure 1.Phase diagram for the spin-1/2 Ising chainwith a longitudinalfield. The dashed line (- - -) depicts the 1QPTwhile the dotted
line (...) the 2QPT.

3
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spike becomesmore pronounced as the transition gets closer to the 2QPT atBz= 1. It is worth pointing out that
such a behavior bears strong similarities with the geometric entanglement, a collectivemeasure of entanglement
indicating howmuch the ground state differs from a separable state [14]. Notice that forBz>1, when the system
is in the paramagnetic phase independently of the sign of the longitudinal fieldBx, (as indicated infigure 2 for
Bz=1.5) , the concurrence becomes a smooth function ofBx. In the central panel offigure 2, we plot the scaling
of the concurrence normalized by itsmaximumvalue,   = max, as a function of the scaling variableκ1 to
determinewhether  fulfills a similar scaling relation as in equation (5). It is enough to investigate what happens
forκ1>0 because  k( )1 has even parity, i.e.  k k= -( ) ( )1 1 . This is a consequence of theHamiltonian, and,
therefore, the ground state, being invariant under the change  -B Bx x and a localπ-rotation of the spins
around the z-axis. Finally, in panel c)wedisplay the scaling of the derivative of the concurrence normalized by its

minimumvalue   ¶ = ¶ ¶
~ [ ]Bx Bx Bx min. Interestingly enough, the concurrence does not scalewith thefitting

parameterκ1, but its derivative does. In the central panel, we can see that the data for differentBz and L do not
collapse in a universal function, while, in the right panel, there is a good data collapse for different values ofBz
and L. Thus, ¶Bx fulfills the scaling ansatz,

  k¶ = ¶( ) [ ] ( ) ( )L B g, , 9Bx z Bx min 1

where g(κ1) is a universal function for any L andBz.We further discuss all these results in section 4.

3. Spin-1XXZ chainwith uniaxial single-ion anisotropy

In this section, we extend the study of entanglement along 1QPTs to a spin-1 system. Since the concurrence,  ,
can only be easily computed for themixed states of qubits, in order to compute the entanglement between two
spin-1 particles we use the negativity [28, 29]

 r
r

=
-( ) ∣∣ ∣∣ ( )1

2
, 10

T
1B

where the operationTB is the partial transpose defined nowon the reduced densitymatrix of two nearest
neighbors spins, ρ ij, and ∣∣ ∣∣... 1 is the sumof the absolute value of all singular values. Notice that negativity is a
lower bound to entanglement. Themodel under scrutiny is the spin-1XXZ chainwith uniaxial single-ion
anisotropy,

å å= + + +
=

-

+ + +
=

ˆ [ ˆ ˆ ˆ ˆ ˆ ˆ ] ( ˆ ) ( )H JS S JS S J S S D S , 11
l

L

l
x

l
x

l
y

l
y

z l
z

l
z

l

L

l
z

1

1

1 1 1
1

2

where
a

Ŝl are the spin-1matrices for spin l andD is the uniaxial single-ion anisotropywhichwe take as positive.
We set J=1, and use it as the unit of energy.We choose thismodel because of the richness of its phase diagram
[30], schematically shown infigure 3, with several 1QPTswhichwe depict with dashed lines. The behavior of 
along the different 1QPTs present in themodel is very different depending on their closeness to amulticritical
point which also involves 2QPTs.We start by examining the negativity as a function of the Jz for a constant
uniaxialfieldD= 3.5 and L=8. Two 1QPTs are crossed at such value ofD, as indicated in the phase diagramby
a gray horizontal line (see figure 3). Thefirst one corresponds to the transition from ferromagnetic order to the
large-D phase, which is crossed approximately at Jz=−4.2. Another 1QPT appears between large-D/Néel at
approximately Jz= 3.8. As clearly shown infigure 4, the former phase transition is clearly signalled by a
discontinuity in  , whereas the latter shows a smooth slope along the transition. Infigure 5, we show in detail

Figure 2.Concurrence of the longitudinal Isingmodel, equation (2), as a function ofBxnear the 1QPT, for different values of the
transversemagneticfieldBz. Panel (a): concurrence for L=40.We observe a spike at the 1QPT critical point,Bx= 0, forBz<0.
Panel (b): concurrence normalized by itsmaximum,  , as a function of the scaling variableκ1 defined in equation (6), there is no data
collapse. Panel (c): derivative of the concurrence normalized by itsminimum, ¶

~
Bx , plotted as a function ofκ1 showing a universal

behavior for the same set of values than in panel (b). The results are obtainedwithDMRGand bond dimensionχ=80 for which they
are converged.

4
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Figure 3.Phase diagram for the spin-1model in equation (11)withD>0. The dashed lines depict 1QPTs and the arrows pointwhere
we cross them. The black dotted line depicts the 2QPTbetweenHaldane andNéel phases. The ovals show the areas wherewe add an
external field to induce a 1QPT between the two-fold degenerated ground states in the ferromagnetic andNéel phases. The red circles
signal the tri-critical points present in the phase diagram.

Figure 4.Negativity as a function of Jz forD= 3.5 and L=8.We observe a discontinuity in the 1QPT from ferromagnetic to large-D
phases and a smooth slope for the 1QPTbetween the large-D andNéel phases. The results are obtainedwith ED.

Figure 5.Phase transition between ferromagnetic and large-D forD=2 and L=8. Left panel, we observe a jump in the negativity
(dotted line) for Jzc evenwhen using a step δ=10−13. Right panel, the corresponding energy crossing between the two-fold
degenerated ferromagnetic ground state at Jz<Jzc (circles and crosses) and the large-D ground state at Jz>Jzc (squares). The results
are obtainedwith ED.

5
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the generic behavior of  together with the corresponding level crossing along the ferromagnetic/large-D
phase transition.We cross the transitions at afixed valueD=2, as depicted by (1) infigure 3, in the nearby
region of a critical point (depicted by a red circle).We observe that even for small steps of the parameter Jz
driving the 1QPT,  is always discontinuous and a neat level crossing is shown between the two-fold
degenerated ferromagnetic ground state, for Jz<Jzc, and the large-D ground state, for Jz>Jzc. Thismeans that,
at Jzc, there is a sudden change in the ground state which is detected by a discontinuity in  . Therefore, in
figure 5, we observe the expected discontinuous behavior for  along a 1QPT even for a systemof just 8 spins
without anyfinite size effects.

We focus nowon to the large-D/Néel 1QPT. Infigure 6we display the negativity and the staggered
magnetization for afixed value Jz= 3.8 as a function of the anisotropy,D, around the critical pointDc,L denoted
by (2) infigure 3.We add the subindex L to indicate that this quantity nowdepends on the system size. In order
to show the behavior for larger systems, we useDMRGcalculations for L=32, 64, 128 and 150. In the two top
panels, we observe that both,  and the staggeredmagnetization, = å - á ñ= ( ) ˆM S1z

st
i
L i

i
z

1 , change smoothly
around the transition point. As L increases, the slope becomesmore pronounced getting closer to a discontinuity
andwe need values ofD closer to the critical point to observe the continuous slope. For instance, the necessary
step inD to observe a continuous behavior is d ~ -10 4 and d ~ -10 6 for L=64 and L=150, respectively.
Note that in this case, as in section 2, we are very close to a 2QPT. Aswe get further from the tricritical point, i.e.
as we increase the value to Jz?Jcrit=3.8, this effect progressively becomes less important and both  andMz

st

are effectively discontinuous. Since the transition is known to be offirst order, we propose a similar FSS as in the
previous section, defining a relevant scaling variable,κ2, as the ratio between the energy contribution ofD along
the transition and the gap at the critical point,

k ~
-
D

( ) ( )D D L
. 12c L

L
2

,

Now,ΔL is obtained numerically and -( )D D Lc L, is a bare estimation for the energy contribution of the
parameterD. In the bottompanels, we plot  andMz

st as a function of this scaling variableκ2. Aswe can
observe, both quantities seem to converge, though not perfectly, towards a universal scaling, as described by
equation (5). It is worthmentioning that equation (12) is an approximationwhereas, in the previous sectionwe
had analytic expressions forΔL andm0 in equation (6). Actually, in [31], a similar FSS, with non-analytic
expressions, is proposed for the Potts chainwith a similar convergence. It seems reasonable, thus, to state that for
this 1QPT, whenwe are close to the 2QPT,  is continuous due tofinite size effects and that it obeys the scaling
ansatz for 1QPT.

Figure 6. Left column: negativity. Right column: staggeredmagnetization. Results are for Jz= 3.8 and different L. In thefirst row, we
plot the quantities as a function ofD.We observe a smooth slope of both the negativity and the staggeredmagnetizationwhere the
1QPT is expected. Bottom row, quantities plotted as a function ofκ2 showing the tendency to converge towards a universal function.
The results are obtainedwithDMRGand bond dimensionχ=150 forwhich they are converged.
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Finally, we analyze the behavior of  when the 1QPT is due to a 2 symmetry breaking of a two fold-

degenerated ground state. To this aimwe add an extramagnetic field, å =
ˆB Sz i

L
i
z

1 (extramagnetic staggered field

å -= ( ) ˆB S1z i
L i

i
zst

1 ) in the ferromagnetic (Néel) phase of the XXZ spin-1model in equation (11). These new terms
lead to two new 1QPTbetween ferromagnetic / ferromagnetic  (Néel/AntiNéel)phases, depicted graphically
by ovals alongD=0 line in the phase diagramof themodel (see figure 3). The corresponding order parameter
for both transitions, themagnetization (Mz), and the staggeredmagnetization (Mz

st) respectively, are
discontinuous in the thermodynamic limit. For the first inducedQPTbetween the ferromagnetic phases, the
entanglement remains always constant and zero.More interesting features appear in theNéel/Anti-Néel
transitionwhose results are summarized infigure 7. These results are obtained using amixture of ED (panels (a)
and (b)) andDMRG (in the remaining panels). The bond dimension inDMRGwas chosen in such away that the
results converged, whichmeant using a bond dimension of 100 or 150. In panels (a) and (b)we show,
respectively,Mz

st and  as a function of the added staggeredmagnetic fieldBz
st.While the order parameter,Mz

st,
has the expected discontinuous behavior, the pairwise entanglement,  , has a dip at the critical point,
displaying a continuous  but a discontinuous derivative. In order to apply the proper FSS ansatz for the
negativity, we start by defining first the relevant scaling variable (aswe did in section 2):

k =
D

( )m B L2
. 13z

L
3

0
st st

In full analogywith the results presented in section 2, and due to the fact that the 2QPTbetweenHaldane/Néel
phases belongs to the same universality class as the spin-1/2 Ising, we use the expression of m0

st from equation (7)
by substituting B J Jz zc z , where Jzc≈1.186 corresponds the 2QPT critical point forD=0 [32]. Our scaling
results are summarized in panels (c) and (d) offigure 7, wherewe show, respectively,Mz

st and  as a function of
κ3. The scaling ansatz, equation (5), works properly forMz

st, but, as it happens for the concurrence,  , in the
spin-1/2 Ising chain, the scaling also fails for the negativity  in this phase transition. Finally, in panels (e) and
(f)we showhow the gap,ΔL, fulfills the scaling ansatz, equation (4), and how the derivative of the negativity,
¶ NBz

st , also verifies the scaling ansatz, equation (9). This last behavior strongly resembles the behavior of the
derivative on the concurrence for the spin longitudinal Ising spin 1/2 chain. To further ensure the correctness of
our results, infigure 7we also display the comparison between our numerical data,Mst(κ3) andΔL(κ3), with the
analytic expressions using an effective two level theory as derived in [23].

Figure 7.Panels (a) and (b),Mz
st and  as a function ofBz

st for different Jz and L=8 (D=0 in all the panels, calculated using ED).
Panels (c) and (d), M mz

st
0
st and   = =

~
( )B 0z

st plotted against the scaling variableκ3, equation (13), (same legend holds and
DMRGused for panels (c)–(f)).Mz

st fulfills the universal scaling, equation (5) but  does not. Panels (e) and (f), both kD D( ) L3 and

 k¶
~

( )B 3z
st (derivative normalized by itsmaximum) show, aswell, a good data collapse. Dashed lines in panels (c) and (e) are

analytically obtained in [23].
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4. Results discussion

Let us discuss here the origin of the concurrence’s continuity together with its discontinuous first derivative
across the the 1QPT in the spin-1/2 Isingmodel described in equation (2). A similar response is shownby the
negativity in the spin-1XXZ chain across the 1QPTbetween theNèel/Anti-Néel phases. These transitions
apparently contradict the expected behavior stated in [18] that links a singularity in the first derivative of the
pairwise entanglement to a 2QPT, given that this singularity originates exclusively from the elements of ρ ij, in
equation (1). To determine the origin of this unusual behavior, we focus on the Ising longitudinalmodel and
analyze the elements of the reduced densitymatrix of the two central spins (ij) that we denote by
r rº á ñ( ) ∣ ∣A B A B, ij as a function of longitudinal field,Bx, for different values of the transversemagnetic fieldBz.
For simplicity of notationwe remove fromnowon the super indices i, j. Given the symmetries of the
Hamiltonian, it suffices to consider just two differentmatrix elements, r r= á    ñ( ) ∣ ∣1, 1 ij and
r r= á    ñ( ) ∣ ∣1, 2 ij , for analyzing the behavior of the concurrence. As plotted in the top panels offigure 8,
ρ(1, 2) is discontinuous along the 1QPT transition, while ρ(1, 1) presents a spike signalling a singularity in itsfirst
derivative. In the bottompanels, we display our results regarding their scaling behavior as a function of the
relevant scaling parameterκ1 (see equation (6)). Interestingly enough, as shown in panel (c), thematrix element
ρ(1, 2) follows exactly the same scaling proposed for 1QPT [23], while it is derivative of thematrix element
ρ(1, 1) (∂Bxρ(1, 1)) and not thematrix element itself which scales properly for different values of L andBz.
Furthermore, it can be shown that all the discontinuities present in elements such as ρ(1, 2) cancel out when
computing the concurrence. As a result, the concurrence  shows a singularity in the first derivative as it would
happen in a 2QPT and it is precisely ¶Bx the quantity which fulfills the FSS and not  itself. The same analysis
applies to the spin-1XXZ chainwith on-site anisotropy, where a dip in the negativity,  , at the critical point
appears. This behavior has the same origin as the previously reported spin-1/2 case and, therefore, it is the
derivative of  and not the negativity itself which fulfills the FSS for 1QPTs.Hence, in these cases, a singularity
in the first derivative of the concurrence/negativity (given and the concurrence/negativity are continuous
functions), does not signal a 2QPT as it was conjectured in [18].

5. Conclusions

In conclusion, in this workwe have analyzed pairwise entanglement behavior in diverse 1QPT transitions driven
by 2-local Hamiltonians.We have shown the dramatic importance offinite size effects when 1QPToccur in the

Figure 8.Matrix component behavior for the reduced densitymatrix r r= á ñ( ) ∣ ∣A B A B,ij ij of the two central spins (i, j) for a chain of
length L=12 along the 1QPT for Isingmodel in the longitudinalfield (equation (2)). For simplicity of notationwe remove the indices
(i, j), see text. Panel (a) shows a discontinuity in ρ(1, 2) at the critical point for different values ofBz; (b) ρ(1, 1) presents a spike at the
critical point; (c) scaling behavior of renormalized ρ(1, 2) as a function of the scaling parameterκ1; (d) scaling behavior of r¶

~
( )B 1, 2x

as a function ofκ1. Results obtainedwith ED.
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nearby region ofmulticritical point containing also 2QPT. To illustrate this fact, we have shown examples of
1QPT in 2-body-Hamiltonians inwhich pairwise entanglementmeasures are continuous across the phase
transitionwhile their first derivatives are not.We have extended our results by using non integrablemodels in
which the same behavior can be observed. A deeper analysis shows that the behavior is inherited from the two
body reduced densitymatrix elements, which for 2-localHamiltonians, are linked to the non-analyticities of the
ground state energy. Ourmain result has been to demonstrate that forfinite systems, the order of theQPT in
symmetry broken phases is given by the scaling behavior of their bipartite entanglement and not by its non-
analytical character. Our results should allow to better determine the order and boundaries ofQPTs near
multicritical points.
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