161 research outputs found

    Electrophysical characteristics of water of the rivers of Siberia and Altai

    Get PDF
    The results of measurements of the complex permittivity at the range of 100 MHz - 40 GHz and the conductivity of the water out of the reservoirs of Tomsk and Kemerovo regions and the Altai Territory are presented in the article. The method of the open-end-coaxial was applied. The conductivity was measured with LCR-meter at a frequency of 100 kHz. All the measurements were performed at temperatures of 10Β°C and 23Β°C. The samples are varied significantly in the values of conductivity, which is related to the geographical sampling place. Differences in permittivity values are greater at the low temperature and low frequencies and at the same time they are also significant at the high temperature and at high frequencies. The results of this study in order to improve the reliability of the analysis of the pollution degree and water salt content of natural water reservoirs should be taken into account the measurement made at wide frequency range. Β© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Increase in Intake Capacity by Dynamic Operation of Injection Wells

    Get PDF
    The method of pumping water to compensate for fluid withdrawals from an oil formation in order to maintain formation pressure has long established itself as an effective technology and is widely used at oil and gas fields. At the same time, field operator is often faced with the problem of reduction in the intake capacity of injection wells, which may be caused by various complications arising in the near-wellbore area due to a violation of water treatment technology or other factors. This problem is typical for reservoirs with low permeability values, which leads to a decrease in the performance indicators of the formation pressure maintenance system. In order to counter contamination of the bottomhole zone of the well, as a rule, injection of specialized acid compositions for the purpose of cleaning is used. To increase the effectiveness of this procedure, the authors of the article propose to discharge the injection well at the maximum permissible speeds. This event will allow primary cleaning of the bottomhole zone of the formation from moving particles clogging the pore space, and reduce formation pressure in the vicinity of the injection well, which will subsequently improve the intake capacity of the well during treatment with acid compositions. The decrease in formation pressure in the bottomhole zone of the well also has a positive effect on the radius of acid penetration into the formation. The proposed approach has been successfully tested on a number of injection wells at one of Β«Gazprom NeftΒ» enterprises. The results of pilot operations showed an increase in the quality of cleaning the bottomhole zone of the formation and an increase in the intake capacity of injection wells with subsequent preservation of intake dynamics

    Soil Contamination Mapping with Hyperspectral Imagery: Pre- Dnieper Chemical Plant (Ukraine) Case Study

    Get PDF
    Radioactive contamination of soils is an issue of severe importance for Ukraine remaining with a significant post-Soviet baggage of not settled problems regarding radioactive waste. Regular radioecological observations and up-to-date contamination mapping based on advanced geoinformation techniques give an ability to prepare for, respond to, and manage potential adverse effects from pollution with radionuclides and heavy metals. Hyperspectral satellite imagery provides potentially powerful tool for soil contamination detection and mapping. An intention to find a relation between remotely sensed hyperspectral and ground-based measured soil contamination fractions in area of the uranium mill tailings deposits near Kamianske city was made. An advanced algorithm based on known TCMI (target-constrained minimal interference)-matched filter with a nonnegative constraint was applied to determine the soil contamination fractions by hyperspectral imagery. The time series maps of spatial distribution of the soil contamination fractions within study area around the Sukhachevske tailings dump are presented. Time series analysis of the map resulted in two independent parameters: the average value for the entire observation period and the daily mean increment of the soil contamination fractions

    Radiation-thermal synthesis of W-type hexaferrites

    Get PDF
    The results of investigations of the phase composition, structural parameters, static and dynamic magnetic properties of BaCo0.7Zn1.3Fe16O27 hexaferrites obtained by the method of self-propagation high-temperature synthesis in combination with mechanochemical activation and radiation-thermal post-sintering are presented. The prospects of the proposed energy-saving approach for the production of ferrite ceramics with a hexagonal structure is shown

    Properties of polydisperse tin-doped dysprosium and indium oxides

    Get PDF
    The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cmβˆ’3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties

    Electromagnetic properties of LaCa[3]Fe[5]O[12] in the microwave range

    Get PDF
    The X-ray diffraction analysis of the LaCa[3]Fe[5]O[12] ferrite (lanthanum ferrite) prepared through high-temperature synthesis via ceramic technology was performed. It was found that ferrites belong to tetragonal system. The electromagnetic response from a flat layer of the composite based on this material under electromagnetic radiation in the frequency range of 0.01-18 GHz was investigated. It is shown that the developed material effectively interacts with electromagnetic radiation. The interaction effectiveness is directly proportional to ferrite concentration. Increased concentration of ferrite leads to growth of the reflection coefficient due to high conductivity of the material and visible decrease in the transmission coefficient in the frequency range of 4-14 GHz

    Spin-magnetophonon level splitting in semimagnetic quantum wells

    Full text link
    Spin-magnetophonon level splitting in a quantum well made of a semimagnetic wide gap semiconductor is considered. The semimagnetic semiconductors are characterized by a large effective gg factor. The resonance conditions ℏωLO=ΞΌBgB\hbar\omega_{\rm LO}=\mu_BgB for the spin flip between two Zeeman levels due to interaction with longitudinal optical phonons can be achieved sweeping magnetic field BB. This condition is studied in quantum wells. It is shown that it leads to a level splitting that is dependent on the electron-phonon coupling strength as well as on the spin-orbit interaction in this structure. We treat in detail the Rashba model for the spin-orbit interaction assuming that the quantum well lacks inversion symmetry and briefly discuss other models. The resonant transmission and reflection of light by the well is suggested as a suitable experimental probe of the level splitting
    • …
    corecore